Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Individualism emerging from the urge to survive

06.06.2008
Researchers at MPQ unveil a mechanism that creates structure in cold molecular gases.

Ultracold quantum gases made of strongly correlated particles are important models for the understanding of solid-state systems. Strong correlations between particles usually arise from elastic interactions between the particles. Researchers of the Quantum Dynamics Division of Prof. Gerhard Rempe and the Theory Division of Prof. Ignacio Cirac at the Max Planck Institute of Quantum Optics (Garching), in collaboration with J. García-Ripoll from the Universidad Complutense de Madrid, now demonstrate, that strong correlations can alternatively be created by inelastic interactions.


Cold molecules (blue) are subject to a periodic potential. When removing the potential, the molecules would normally move freely. However, with a strong inelastic inter-particle interaction, the particles remain frozen in their initial state. MPQ

In this system, the correlations keep the particles away from each other und thus loss processes that would usually arise from the inelastic character of the interaction are suppressed (Science, June 6th 2008). Molecules stored in an optical lattice shaped like a corrugated metal sheet could in principle move freely in one direction, but they prefer to remain lined up periodically to avoid collisions that would lead to loss. This experiment leads the way for work on other quantum systems in which strong correlations can also be expected to arise from inelastic interactions.

Macroscopic properties such as magnetism or high-temperature superconductivity result from a complex interplay of many particles, which are strongly correlated, that is to say, they greatly influence each others behaviour. It is crucial whether the particles are fermions or bosons: bosons at low temperature prefer to occupy the same state. This behaviour is realized in its clearest form in a Bose-Einstein condensate, in which approximately 100 000 particles merge to form a super-atom and a single atom no longer differs from the others in its quantum properties. Fermions, however, must differ from each other in at least one quantum number, which automatically makes them strongly correlated.

In the experiment described here, bosonic molecules display this very behaviour of fermions; and this individualism saves them from their mutual destruction. The physicists begin with the preparation of a Bose-Einstein condensate of rubidium atoms (which are bosons) and load it into a three-dimensional "optical lattice". This is a crystalline structure that consists of light and is created by overlapping three standing light waves, one along each coordinate axis. The resulting laser light field resembles a stack of egg-cartons, where the atoms settle down in the dimples. Each site is occupied by exactly two atoms. Next, a magnetic field is applied to address a so-called Feshbach resonance, which makes the previously unbound atoms undergo a chemical reaction to fragile molecules. At this stage, the depth of the dimples is chosen such that each molecule is trapped at its site and cannot move to neighbouring sites.

But what happens if the optical lattice is subsequently modified such that it takes on the form of a stack of corrugated metal sheets? Such a transformation of the lattice geometry can be realized by changing the power of the applied laser light. The molecules, lined up like pearls on a string, are now free to move along a trough -- at least in principle. Intuitively one might suspect that the molecules will collide with their neighbours and be destroyed in the process due their fragility. This would result in a rapid decrease of the number of molecules.

Surprisingly, the experiment shows that the particles remain at rest and do not collide with each other. Dominik Bauer, a graduate student working on the experiment, explains why that is. "In principle, the molecules can be thought of as if they were soap bubbles. If they experienced too close an encounter with a neighbour in the trough, then both would disintegrate. But the molecules are subject to quantum mechanics, and so they behave differently. They keep their distance from each other. While they are bosons, they thus display a behaviour that is typical of fermions. In the jargon of the scientific community this is called fermionisation".

The results of this experiment reveal possibilities to realize strongly correlated quantum states in systems, which would normally suffer from fast loss rates due to the violent interaction between particles. Hence, there is hope to create beneficial conditions in systems that are normally plagued by fast losses, so that the loss is reduced to an acceptable margin, thus enabling experiments within reasonable time scales. Owing to the generality of the mechanisms discovered in the experiment, this might open perspectives for new experiments not only in the field of cold gases but in a much broader field of science. [S.D. / O.M.]

Original publication:
N. Syassen, D. M. Bauer, M. Lettner, T. Volz, D. Dietze, J. J. Garcia-Ripoll, J. I. Cirac, G. Rempe, S. Dürr
"Strong Dissipation Inhibits Losses and induces Correlations in Cold Molecular Gases"

Science, June 6th, 2008

Contact:

Prof. Dr. Gerhard Rempe
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 - 701
Fax: +49 - 89 / 32905 - 311
e-mail: gerhard.rempe@mpq.mpg.de
Prof. Dr. Ignacio Cirac
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 - 736
Fax: +49 - 89 / 32905 - 336
e-mail: ignacio.cirac@mpq.mpg.de
Dipl. Phys. Dominik Bauer
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 377
Fax: +49 - 89 / 32905 - 311
e-mail: dominik.bauer@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations Office
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>