Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanderbilt astronomers getting into planet-finding game

06.06.2008
Vanderbilt astronomers have constructed a special-purpose telescope that will allow them to participate in one of the hottest areas in astronomy ­ the hunt for earthlike planets circling other stars.

The instrument, called the Kilodegree Extremely Little Telescope (KELT), has been assembled and is being tested at Vanderbilt¹s Dyer Observatory. Shortly, it will be shipped to South Africa where it will become only the second dedicated planet-finder scanning the stars in the southern sky.

The KELT project is a collaboration between Vanderbilt and the University of Cape Town. The instrument will be set up at the South African Astronomical Observatory located about 200 miles northeast of the city of Cape Town. The South Africans have built a special enclosure to hold the telescope. They will maintain the instrument and ship the data that it produces back to Nashville. The telescope is designed for remote operation so it can be controlled by astronomers at both universities.

As its name implies, KELT is a very small telescope, about the size of some of the telescopes used by amateur astronomers. Its optics are surprisingly modest: It uses a professional quality photographic lens. But it has an extremely high quality imaging system that captures the light and converts it to digital data. It cost about $50,000 to construct.

³The telescope has been designed to detect planets passing across the face of bright stars,² says Joshua Pepper, the post-doctoral fellow who is managing the project. As a doctoral student at Ohio State University, he worked on the problem of finding planets around distant stars using large amounts of data. If a planet crosses the face of the star, it blocks a small percentage of the sunlight. KELT is designed to detect these subtle fluctuations in nearby stars similar to the sun. It is a copy of a similar instrument that Pepper helped design for OSU that has been set up in Arizona.

Unlike large telescopes that focus in on small parts of the sky in order to produce extremely high resolution images, KELT looks at large areas of the sky that contain thousands of stars. In order to see variations in brightness, it must frequently revisit each area many times every night.

As a result, the small scope will produce prodigious amounts of data (enough to fill a typical laptop¹s hard drive in a few days). In order to pick out the variations caused by planets from other effects, such as dimming caused by passing clouds or variations in a star¹s overall brightness, the astronomers will process the data with the supercomputer in Vanderbilt¹s Advanced Computing Center for Research & Education.

According to Associate Professor of Astronomy Keivan Stassun, KELT is an example of a new program called the Vanderbilt Initiative in Data-Intensive Astrophysics (VIDA) [http://www.vanderbilt.edu/astro/vida].

³Astronomy is now entering a period when the way astronomers do their work is fundamentally changing,² Stassun says. ³The traditional model has been that of an individual astronomer, or a small team of astronomers, going to a telescope and pointing it at a star or a galaxy, collecting data, analyzing the data and publishing the results. But, with the advent of high-performance computers, robotic telescopes and digital detectors that are able to see large swaths of the sky at once, the quantities of data that we can collect are rapidly increasing so we need new ways of analyzing them in real time.² The purpose of VIDA, which is funded by the Office of the Provost, is to give Vanderbilt astronomers the resources they need to become leaders in this new way of conducting astronomical research.

The agreement to place the new telescope in South Africa was the result of a second campus initiative coming from the Vanderbilt International Office. ³We are in the process of identifying peer institutions in all parts of the world with whom we can collaborate on research projects in a variety of disciplines,² explains Joel Harrington, assistant provost for international affairs.

The Cape Town agreement is one of four ³international core partnerships² that Vanderbilt has established. The other three are with the University of Melbourne in Australia, The University in São Paulo in Brazil and Fudan University in Shanghai, China.

In addition to collaborating on research projects, the partnerships involve the exchange of students. Two Nashville students have gone to Cape Town to study and two Cape Town students will come to Nashville. A number of the Nashville exchange students will be drawn from the Fisk-Vanderbilt Master¹s-to-PhD Program, a joint program with Fisk University, Nashville¹s historically black university.

³An important goal of the new research partnershipŠis building and enhancing the scientific capacity among black South Africans and African Americans,² according to a media statement issued by the University of Cape Town.

Vanderbilt University is a private research university of approximately 6,500 undergraduates and 5,300 graduate and professional students. Founded in 1873, the University comprises 10 schools, a public policy institute, a distinguished medical center and The Freedom Forum First Amendment Center.

Vanderbilt, ranked as one of the nation¹s top universities, offers undergraduate programs in the liberal arts and sciences, engineering, music, education and human development, and a full range of graduate and professional degrees.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu/News

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>