Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini sees collisions of moonlets on Saturn’s ring

05.06.2008
A team of scientists led from the UK has discovered that the rapid changes in Saturn’s F ring can be attributed to small moonlets causing perturbations. Their results are reported in Nature (5th June 2008).

Saturn’s F ring has long been of interest to scientists as its features change on timescales from hours to years and it is probably the only location in the solar system where large scale collisions happen on a daily basis.

Understanding these processes helps scientists understand the early stages of planet formation.

Professor Carl Murray of Queen Mary, University of London and member of the Cassini Imaging Team led the analysis. He says “Saturn’s F ring is perhaps the most unusual and dynamic ring in the solar system; it has multiple structures with features changing on a variety of timescales from hours to years.”

The team used images gathered by the NASA-ESA Cassini Huygens mission. Images snapped by Cassini in 2006 and 2007 show the formation and evolution of a series of structures (called "jets" in the paper) that are the result of collisions between small nearby moonlets and the core of the F ring.

A ~5km object discovered by Cassini in 2004 (called S/2004 S 6) is the best candidate to explain some of the largest jets seen in the images.

Professor Murray adds “Previous research has noted the features in the F ring and concluded that either another moon of radius about 100km must be present and scattering the particles in the ring, or a much smaller moonlet was colliding with its constituent particles. We can now say that the moonlet is the most likely explanation and even confirm the identity of one culprit.”

The F ring and all the nearby objects are being continually perturbed by encounters with the shepherding moon Prometheus and this allows the gravitational signature of the embedded objects to be detected, even when the objects themselves cannot be seen.

Dr Sébastien Charnoz of Université Paris 7 / CEA Saclay is a co-author on the paper. He says “Large scale collisions happen in Saturn’s F ring almost daily – making it a unique place to study. We can now say that these collisions are responsible for the changing features we observe there.”

The Cassini images also show new features (called "fans") which result from the gravitational effect of small (~1km) satellites orbiting close to the F ring core.

Professor Keith Mason, CEO of the Science and Technology Facilities Council which funds UK involvement in Cassini-Huygens said “This incredibly successful mission has taught us a great deal about the solar system and the processes at work in it. Understanding how small objects move within the dust rings around Saturn gives an insight into the processes that drive planetary formation, where the proto-planet collects material in its orbit through a dust plane and carves out similar grooves and tracks.”

Paper title: "The determination of the structure of Saturn's F ring by nearby moonlets"

Carl D. Murray, Kevin Beurle, Nicholas J. Cooper, Michael W. Evans, Gareth A. Williams & Sébastien Charnoz

Images

Images showing the F ring
Credit NASA/JPL/Space Science Institute
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=3055
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=3052
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2933
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2850
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2648
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2560
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2463
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2335
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2330
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=1700

Julia Maddock | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>