Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini sees collisions of moonlets on Saturn’s ring

05.06.2008
A team of scientists led from the UK has discovered that the rapid changes in Saturn’s F ring can be attributed to small moonlets causing perturbations. Their results are reported in Nature (5th June 2008).

Saturn’s F ring has long been of interest to scientists as its features change on timescales from hours to years and it is probably the only location in the solar system where large scale collisions happen on a daily basis.

Understanding these processes helps scientists understand the early stages of planet formation.

Professor Carl Murray of Queen Mary, University of London and member of the Cassini Imaging Team led the analysis. He says “Saturn’s F ring is perhaps the most unusual and dynamic ring in the solar system; it has multiple structures with features changing on a variety of timescales from hours to years.”

The team used images gathered by the NASA-ESA Cassini Huygens mission. Images snapped by Cassini in 2006 and 2007 show the formation and evolution of a series of structures (called "jets" in the paper) that are the result of collisions between small nearby moonlets and the core of the F ring.

A ~5km object discovered by Cassini in 2004 (called S/2004 S 6) is the best candidate to explain some of the largest jets seen in the images.

Professor Murray adds “Previous research has noted the features in the F ring and concluded that either another moon of radius about 100km must be present and scattering the particles in the ring, or a much smaller moonlet was colliding with its constituent particles. We can now say that the moonlet is the most likely explanation and even confirm the identity of one culprit.”

The F ring and all the nearby objects are being continually perturbed by encounters with the shepherding moon Prometheus and this allows the gravitational signature of the embedded objects to be detected, even when the objects themselves cannot be seen.

Dr Sébastien Charnoz of Université Paris 7 / CEA Saclay is a co-author on the paper. He says “Large scale collisions happen in Saturn’s F ring almost daily – making it a unique place to study. We can now say that these collisions are responsible for the changing features we observe there.”

The Cassini images also show new features (called "fans") which result from the gravitational effect of small (~1km) satellites orbiting close to the F ring core.

Professor Keith Mason, CEO of the Science and Technology Facilities Council which funds UK involvement in Cassini-Huygens said “This incredibly successful mission has taught us a great deal about the solar system and the processes at work in it. Understanding how small objects move within the dust rings around Saturn gives an insight into the processes that drive planetary formation, where the proto-planet collects material in its orbit through a dust plane and carves out similar grooves and tracks.”

Paper title: "The determination of the structure of Saturn's F ring by nearby moonlets"

Carl D. Murray, Kevin Beurle, Nicholas J. Cooper, Michael W. Evans, Gareth A. Williams & Sébastien Charnoz

Images

Images showing the F ring
Credit NASA/JPL/Space Science Institute
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=3055
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=3052
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2933
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2850
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2648
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2560
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2463
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2335
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2330
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=1700

Julia Maddock | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>