Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini sees collisions of moonlets on Saturn’s ring

05.06.2008
A team of scientists led from the UK has discovered that the rapid changes in Saturn’s F ring can be attributed to small moonlets causing perturbations. Their results are reported in Nature (5th June 2008).

Saturn’s F ring has long been of interest to scientists as its features change on timescales from hours to years and it is probably the only location in the solar system where large scale collisions happen on a daily basis.

Understanding these processes helps scientists understand the early stages of planet formation.

Professor Carl Murray of Queen Mary, University of London and member of the Cassini Imaging Team led the analysis. He says “Saturn’s F ring is perhaps the most unusual and dynamic ring in the solar system; it has multiple structures with features changing on a variety of timescales from hours to years.”

The team used images gathered by the NASA-ESA Cassini Huygens mission. Images snapped by Cassini in 2006 and 2007 show the formation and evolution of a series of structures (called "jets" in the paper) that are the result of collisions between small nearby moonlets and the core of the F ring.

A ~5km object discovered by Cassini in 2004 (called S/2004 S 6) is the best candidate to explain some of the largest jets seen in the images.

Professor Murray adds “Previous research has noted the features in the F ring and concluded that either another moon of radius about 100km must be present and scattering the particles in the ring, or a much smaller moonlet was colliding with its constituent particles. We can now say that the moonlet is the most likely explanation and even confirm the identity of one culprit.”

The F ring and all the nearby objects are being continually perturbed by encounters with the shepherding moon Prometheus and this allows the gravitational signature of the embedded objects to be detected, even when the objects themselves cannot be seen.

Dr Sébastien Charnoz of Université Paris 7 / CEA Saclay is a co-author on the paper. He says “Large scale collisions happen in Saturn’s F ring almost daily – making it a unique place to study. We can now say that these collisions are responsible for the changing features we observe there.”

The Cassini images also show new features (called "fans") which result from the gravitational effect of small (~1km) satellites orbiting close to the F ring core.

Professor Keith Mason, CEO of the Science and Technology Facilities Council which funds UK involvement in Cassini-Huygens said “This incredibly successful mission has taught us a great deal about the solar system and the processes at work in it. Understanding how small objects move within the dust rings around Saturn gives an insight into the processes that drive planetary formation, where the proto-planet collects material in its orbit through a dust plane and carves out similar grooves and tracks.”

Paper title: "The determination of the structure of Saturn's F ring by nearby moonlets"

Carl D. Murray, Kevin Beurle, Nicholas J. Cooper, Michael W. Evans, Gareth A. Williams & Sébastien Charnoz

Images

Images showing the F ring
Credit NASA/JPL/Space Science Institute
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=3055
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=3052
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2933
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2850
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2648
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2560
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2463
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2335
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2330
http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=1700

Julia Maddock | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>