Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists in Japan Design First Optical Pacemaker for Laboratory Research

03.06.2008
The world's first optical pacemaker is described in an article published today in Optics Express, the Optical Society’s open-access journal. A team of scientists at Osaka University in Japan show that powerful, but very short, laser pulses can help control the beating of heart muscle cells.

"If you put a large amount of laser power through these cells over a very short time period, you get a huge response," says Nicholas Smith, who led the research. The laser pulses cause the release of calcium ions within the cells, Smith explains, and this action forces the cells to contract.

This technique provides a tool for controlling heart muscle cells in the laboratory, a breakthrough that may help scientists better understand the mechanism of heart muscle contraction.

One potential application of this technology is in studying uncoordinated contractions in heart muscle. Normally, heart muscle contracts in a highly coordinated fashion, and this is what allows the heart to pump blood through the vasculature. But in some people, this coordinated beating breaks down, and the heart twitches irregularly—a condition known as fibrillation.

The new laser technique may allow scientists to create a form of fibrillation in the test tube. The lasers can destabilize the beating of the cells in laboratory experiments by introducing a beat frequency in one target cell distinct from the surrounding cells. This would allow scientists to study irregular heart beats on a cellular level and screen anti-fibrillation drugs.

Outside the laboratory, exposing heart muscle cells to powerful laser pulses can have its drawbacks. Although the laser pulses last for less than a trillionth of a second, damaging effects can build up over time and this currently limits the possibility of clinical applications.

This work was supported by the Japan Science and Technology organization.

Paper: "A Femtosecond Laser Pacemaker for Heart Muscle Cells," N.I. Smith et al, Optics Express. Complete paper available on request.

About OSA

Uniting more than 70,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

Colleen Morrison | newswise
Further information:
http://www.osa.org
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>