Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Phoenix Scoops Up Martian Soil

03.06.2008
One week after landing on far northern Mars, the Phoenix mars Lander lifted its first scoop of Martian soil as a test of the lander's robotic arm.

The practice scoop was emptied onto a designated dump area on the ground after the Robotic Arm Camera photographed the soil inside the scoop. The Phoenix team plans to have the arm deliver its next scoopful, later this week, to an instrument that heats and sniffs the sample to identify ingredients.

A glint of bright material appears in the scooped-up soil and in the hole from which it came. "That bright material might be ice or salt. We're eager to do testing of the next three surface samples collected nearby to learn more about it," said Ray Arvidson of Washington University in St. Louis, Phoenix co-investigator for the robotic arm.

The camera on the arm examined the lander's first scoop of Martian soil. "The camera has its own red, green and blue lights, and we combine separate images taken with different illumination to create color images," said The University of Arizona's Pat Woida, senior engineer on the Phoenix team.

The Phoenix mission is led by Peter Smith at the UA with project management by NASA's Jet Propulsion Laboratory, located in Pasadena, Calif., and development partnership at Lockheed Martin, located in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

MEDIA CONTACTS:
Guy Webster, Jet Propulsion Laboratory
(818-354-5011, guy.webster@jpl.nasa.gov) Sara Hammond, University of Arizona (520-626-1974, shammond@lpl.arizona.edu) Dwayne Brown, NASA Headquarters, Washington (202-358-1726, dwayne.c.brown@nasa.gov)

Lori Stiles | University of Arizona
Further information:
http://phoenix.lpl.arizona.edu
http://www.nasa.gov/phoenix

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>