Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New metamaterial proves to be a 'perfect' absorber of light

Resonators couple individually to electric and magnetic fields to absorb all incident radiation

A team of scientists from Boston College and Duke University has developed a highly-engineered metamaterial capable of absorbing all of the light that strikes it – to a scientific standard of perfection – they report in the latest edition of Physical Review Letters.

The team designed and engineered a metamaterial that uses tiny geometric surface features to successfully capture the electric and magnetic properties of a microwave to the point of total absorption.

"Three things can happen to light when it hits a material," says Boston College Physicist Willie J. Padilla. "It can be reflected, as in a mirror. It can be transmitted, as with window glass. Or it can be absorbed and turned into heat. This metamaterial has been engineered to ensure that all light is neither reflected nor transmitted, but is turned completely into heat and absorbed. It shows we can design a metamaterial so that at a specific frequency it can absorb all of the photons that fall onto its surface."

In addition to Padilla, the team included BC researcher Nathan I. Landy, Duke University Professor David R. Smith and researchers Soji Sajuyigbe and Jack J. Mock.

The group used computer simulations based on prior research findings in the field to design resonators able to couple individually to electric and magnetic fields to successfully absorb all incident radiation, according to their findings.

Because its elements can separately absorb the electric and magnetic components of an electromagnetic wave, the "perfect metamaterial absorber" created by the researchers can be highly absorptive over a narrow frequency range.

The metamaterial is the first to demonstrate perfect absorption and unlike conventional absorbers it is constructed solely out of metallic elements, giving the material greater flexibility for applications related to the collection and detection of light, such as imaging, says Padilla, an assistant professor of Physics.

Metamaterial designs give them new properties beyond the limits of their actual physical components and allow them to produce "tailored" responses to radiation. Because their construction makes them geometrically scalable, metamaterials are able to operate across a significant portion of the electromagnetic spectrum.

Ed Hayward | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>