Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How to make microwaves on a chip to replace X-rays for medical imaging and security

Is microwave radiation the nondestructive imaging technology of the future? Microwaves with frequencies from a few hundred gigahertz (GHz) up to slightly over 1 terahertz (THz), penetrate just a short distance into surfaces without the ionizing damage caused by X-rays.

The technology could be used to detect skin cancer or image dental flaws beneath the enamel. It could also be a valuable tool for airport security, to detect objects hidden under clothing.

Most of these applications require inexpensive portable hardware that can generate signals in the GHz to THz range with more than 1 watt of power. However, transistors on a standard silicon chip have been limited to a few milliwatts at up to about 100 GHz.

Now a method of generating high-power signals at frequencies of 200 GHz and higher on an ordinary silicon chip has been proposed by Ehsan Afshari, Cornell assistant professor of electrical and computer engineering, and Harish Bhat, assistant professor of mathematics at the University of California-Merced. The researchers present a mathematical analysis of the new method in the May issue of the journal Physical Review E.

Afshari and Bhat propose to use a phenomenon known as nonlinear constructive interference. Linear constructive interference occurs when two signals that are in phase – that is, with their peaks and valleys matched – produce a new signal as large as both added together. But if the signals are traveling through an uneven medium, the waves can become distorted, some delayed, some moving ahead to produce a "nonlinear" result that combines many small waves into fewer large peaks. Afshari likens the effect to the breaking of waves on the seashore. In the open ocean, waves travel as smooth undulations. But near shore the waves encounter an uneven surface at varying depths and become distorted into breakers.

To create this effect on a chip, the researchers propose a lattice of squares made up of inductors – the equivalent of tiny coils of wire – with each intersection grounded through a capacitor. An electrical wave moves across the lattice by alternately filling each inductor then discharging the current into the adjacent capacitor. A capacitor temporarily stores and releases electrons, and these capacitors, made of layers of silicon and silicon dioxide, are designed to vary their storage capacity as the voltage of the signal changes, creating the equivalent of the varying depths of an ocean beach and distorting the timing of the electrical signals that pass by.

When low-frequency, low-power signals are applied simultaneously to both the vertical and horizontal wires of the lattice, the waves they produce interfere as they meet across the lattice, combining many small waves into one large peak. The process produces harmonic signals at multiples of the original frequency, and a high-power, high-frequency signal can be read out somewhere in the middle of the lattice.

According to computer simulations by Afshari and Bhat, the process can be implemented on a common complimentary metal-oxide silicon (CMOS) chip to generate signals at frequencies well above the ordinary cutoff frequencies of such chips, with at least 10 times the input power. Frequencies up to around 1.16 THz are possible, the researchers predict.

Blaine Friedlander | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>