Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to make microwaves on a chip to replace X-rays for medical imaging and security

02.06.2008
Is microwave radiation the nondestructive imaging technology of the future? Microwaves with frequencies from a few hundred gigahertz (GHz) up to slightly over 1 terahertz (THz), penetrate just a short distance into surfaces without the ionizing damage caused by X-rays.

The technology could be used to detect skin cancer or image dental flaws beneath the enamel. It could also be a valuable tool for airport security, to detect objects hidden under clothing.

Most of these applications require inexpensive portable hardware that can generate signals in the GHz to THz range with more than 1 watt of power. However, transistors on a standard silicon chip have been limited to a few milliwatts at up to about 100 GHz.

Now a method of generating high-power signals at frequencies of 200 GHz and higher on an ordinary silicon chip has been proposed by Ehsan Afshari, Cornell assistant professor of electrical and computer engineering, and Harish Bhat, assistant professor of mathematics at the University of California-Merced. The researchers present a mathematical analysis of the new method in the May issue of the journal Physical Review E.

Afshari and Bhat propose to use a phenomenon known as nonlinear constructive interference. Linear constructive interference occurs when two signals that are in phase – that is, with their peaks and valleys matched – produce a new signal as large as both added together. But if the signals are traveling through an uneven medium, the waves can become distorted, some delayed, some moving ahead to produce a "nonlinear" result that combines many small waves into fewer large peaks. Afshari likens the effect to the breaking of waves on the seashore. In the open ocean, waves travel as smooth undulations. But near shore the waves encounter an uneven surface at varying depths and become distorted into breakers.

To create this effect on a chip, the researchers propose a lattice of squares made up of inductors – the equivalent of tiny coils of wire – with each intersection grounded through a capacitor. An electrical wave moves across the lattice by alternately filling each inductor then discharging the current into the adjacent capacitor. A capacitor temporarily stores and releases electrons, and these capacitors, made of layers of silicon and silicon dioxide, are designed to vary their storage capacity as the voltage of the signal changes, creating the equivalent of the varying depths of an ocean beach and distorting the timing of the electrical signals that pass by.

When low-frequency, low-power signals are applied simultaneously to both the vertical and horizontal wires of the lattice, the waves they produce interfere as they meet across the lattice, combining many small waves into one large peak. The process produces harmonic signals at multiples of the original frequency, and a high-power, high-frequency signal can be read out somewhere in the middle of the lattice.

According to computer simulations by Afshari and Bhat, the process can be implemented on a common complimentary metal-oxide silicon (CMOS) chip to generate signals at frequencies well above the ordinary cutoff frequencies of such chips, with at least 10 times the input power. Frequencies up to around 1.16 THz are possible, the researchers predict.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>