Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to make microwaves on a chip to replace X-rays for medical imaging and security

02.06.2008
Is microwave radiation the nondestructive imaging technology of the future? Microwaves with frequencies from a few hundred gigahertz (GHz) up to slightly over 1 terahertz (THz), penetrate just a short distance into surfaces without the ionizing damage caused by X-rays.

The technology could be used to detect skin cancer or image dental flaws beneath the enamel. It could also be a valuable tool for airport security, to detect objects hidden under clothing.

Most of these applications require inexpensive portable hardware that can generate signals in the GHz to THz range with more than 1 watt of power. However, transistors on a standard silicon chip have been limited to a few milliwatts at up to about 100 GHz.

Now a method of generating high-power signals at frequencies of 200 GHz and higher on an ordinary silicon chip has been proposed by Ehsan Afshari, Cornell assistant professor of electrical and computer engineering, and Harish Bhat, assistant professor of mathematics at the University of California-Merced. The researchers present a mathematical analysis of the new method in the May issue of the journal Physical Review E.

Afshari and Bhat propose to use a phenomenon known as nonlinear constructive interference. Linear constructive interference occurs when two signals that are in phase – that is, with their peaks and valleys matched – produce a new signal as large as both added together. But if the signals are traveling through an uneven medium, the waves can become distorted, some delayed, some moving ahead to produce a "nonlinear" result that combines many small waves into fewer large peaks. Afshari likens the effect to the breaking of waves on the seashore. In the open ocean, waves travel as smooth undulations. But near shore the waves encounter an uneven surface at varying depths and become distorted into breakers.

To create this effect on a chip, the researchers propose a lattice of squares made up of inductors – the equivalent of tiny coils of wire – with each intersection grounded through a capacitor. An electrical wave moves across the lattice by alternately filling each inductor then discharging the current into the adjacent capacitor. A capacitor temporarily stores and releases electrons, and these capacitors, made of layers of silicon and silicon dioxide, are designed to vary their storage capacity as the voltage of the signal changes, creating the equivalent of the varying depths of an ocean beach and distorting the timing of the electrical signals that pass by.

When low-frequency, low-power signals are applied simultaneously to both the vertical and horizontal wires of the lattice, the waves they produce interfere as they meet across the lattice, combining many small waves into one large peak. The process produces harmonic signals at multiples of the original frequency, and a high-power, high-frequency signal can be read out somewhere in the middle of the lattice.

According to computer simulations by Afshari and Bhat, the process can be implemented on a common complimentary metal-oxide silicon (CMOS) chip to generate signals at frequencies well above the ordinary cutoff frequencies of such chips, with at least 10 times the input power. Frequencies up to around 1.16 THz are possible, the researchers predict.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>