Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Phoenix Lander Robotic Arm Camera Sees Possible Ice

02.06.2008
Scientists have discovered what may be ice that was exposed when soil was blown away as NASA's Phoenix spacecraft landed on Mars last Sunday, May 25. The possible ice appears in an image the robotic arm camera took underneath the lander, near a footpad.

"We could very well be seeing rock, or we could be seeing exposed ice in the retrorocket blast zone," said Ray Arvidson of Washington University, St. Louis, Mo., co-investigator for the robotic arm. "We'll test the two ideas by getting more data, including color data, from the robotic arm camera. We think that if the hard features are ice, they will become brighter because atmospheric water vapor will collect as new frost on the ice.

"Full confirmation of what we're seeing will come when we excavate and analyze layers in the nearby workspace," Arvidson said.

Testing last night of a Phoenix instrument that bakes and sniffs samples to identify ingredients identified a possible short circuit. This prompted commands for diagnostic steps to be developed and sent to the lander in the next few days. The instrument is the Thermal and Evolved Gas Analyzer. It includes acalorimeter that tracks how much heat is needed to melt or vaporize substances in a sample, plus a mass spectrometer to examine vapors driven off by the heat. The Thursday, May 29, tests recorded electrical behavior consistent with an intermittent short circuit in the spectrometer portion.

"We have developed a strategy to gain a better understanding of this behavior, and we have identified workarounds for some of the possibilities," said William Boynton of the University of Arizona, Tucson, lead scientist for the instrument.

The latest data from the Canadian Space Agency's weather station shows another sunny day at the Phoenix landing site with temperatures holding at minus 30 degrees Celsius (minus 22 degrees Fahrenheit) as the sol's high, and a low of minus 80 degrees Celsius (minus 112 degrees Fahrenheit). The lidar instrument was activated for a 15-minute period just before noon local Mars time, and showed increasing dust in the atmosphere.

"This is the first time lidar technology has been used on the surface of another planet," said the meteorological station's chief engineer, Mike Daly, from MDA in Brampton, Canada. "The team is elated that we are getting such interesting data about the dust dynamics in the atmosphere."

The mission passed a "safe to proceed" review on Thursday evening, meeting criteria to proceed with evaluating and using the science instruments.

"We have evaluated the performance of the spacecraft on the surface and found we're ready to move forward. While we are still investigating instrument performance such as the anomaly on TEGA [Thermal and Evolved Gas Analyzer], the spacecraft's infrastructure has passed its tests and gets a clean bill of health," said David Spencer of NASA's Jet Propulsion Laboratory, Pasadena, Calif., deputy project manager for Phoenix.

"We're still in the process of checking out our instruments," Phoenix project scientist Leslie Tamppari of JPL said. "The process is designed to be very flexible, to respond to discoveries and issues that come up every day. We're in the process of taking images and getting color information that will help us understand soil properties. This will help us understand where best to first touch the soil and then where and how best to dig."

The Phoenix mission is led by Peter Smith at the University of Arizona with project management at JPL and development partnership at Lockheed Martin, Denver. International contributions come from the Canadian Space Agency; the University of Neuachatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

MEDIA CONTACTS:
Guy Webster, Jet Propulsion Laboratory (818-354-6278,guy.webster@jpl.nasa.gov)
Dwayne Brown, NASA Headquarters (202-358-1726,dwayne.c.brown@nasa.gov)
Sara Hammond, University of Arizona (520-626-1974, shammond@lpl.arizona.edu)

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://phoenix.lpl.arizona.edu
http://www.nasa.gov/phoenix

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>