Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Phoenix Lander Robotic Arm Camera Sees Possible Ice

02.06.2008
Scientists have discovered what may be ice that was exposed when soil was blown away as NASA's Phoenix spacecraft landed on Mars last Sunday, May 25. The possible ice appears in an image the robotic arm camera took underneath the lander, near a footpad.

"We could very well be seeing rock, or we could be seeing exposed ice in the retrorocket blast zone," said Ray Arvidson of Washington University, St. Louis, Mo., co-investigator for the robotic arm. "We'll test the two ideas by getting more data, including color data, from the robotic arm camera. We think that if the hard features are ice, they will become brighter because atmospheric water vapor will collect as new frost on the ice.

"Full confirmation of what we're seeing will come when we excavate and analyze layers in the nearby workspace," Arvidson said.

Testing last night of a Phoenix instrument that bakes and sniffs samples to identify ingredients identified a possible short circuit. This prompted commands for diagnostic steps to be developed and sent to the lander in the next few days. The instrument is the Thermal and Evolved Gas Analyzer. It includes acalorimeter that tracks how much heat is needed to melt or vaporize substances in a sample, plus a mass spectrometer to examine vapors driven off by the heat. The Thursday, May 29, tests recorded electrical behavior consistent with an intermittent short circuit in the spectrometer portion.

"We have developed a strategy to gain a better understanding of this behavior, and we have identified workarounds for some of the possibilities," said William Boynton of the University of Arizona, Tucson, lead scientist for the instrument.

The latest data from the Canadian Space Agency's weather station shows another sunny day at the Phoenix landing site with temperatures holding at minus 30 degrees Celsius (minus 22 degrees Fahrenheit) as the sol's high, and a low of minus 80 degrees Celsius (minus 112 degrees Fahrenheit). The lidar instrument was activated for a 15-minute period just before noon local Mars time, and showed increasing dust in the atmosphere.

"This is the first time lidar technology has been used on the surface of another planet," said the meteorological station's chief engineer, Mike Daly, from MDA in Brampton, Canada. "The team is elated that we are getting such interesting data about the dust dynamics in the atmosphere."

The mission passed a "safe to proceed" review on Thursday evening, meeting criteria to proceed with evaluating and using the science instruments.

"We have evaluated the performance of the spacecraft on the surface and found we're ready to move forward. While we are still investigating instrument performance such as the anomaly on TEGA [Thermal and Evolved Gas Analyzer], the spacecraft's infrastructure has passed its tests and gets a clean bill of health," said David Spencer of NASA's Jet Propulsion Laboratory, Pasadena, Calif., deputy project manager for Phoenix.

"We're still in the process of checking out our instruments," Phoenix project scientist Leslie Tamppari of JPL said. "The process is designed to be very flexible, to respond to discoveries and issues that come up every day. We're in the process of taking images and getting color information that will help us understand soil properties. This will help us understand where best to first touch the soil and then where and how best to dig."

The Phoenix mission is led by Peter Smith at the University of Arizona with project management at JPL and development partnership at Lockheed Martin, Denver. International contributions come from the Canadian Space Agency; the University of Neuachatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute.

MEDIA CONTACTS:
Guy Webster, Jet Propulsion Laboratory (818-354-6278,guy.webster@jpl.nasa.gov)
Dwayne Brown, NASA Headquarters (202-358-1726,dwayne.c.brown@nasa.gov)
Sara Hammond, University of Arizona (520-626-1974, shammond@lpl.arizona.edu)

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://phoenix.lpl.arizona.edu
http://www.nasa.gov/phoenix

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>