Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listen to Phoenix descend

30.05.2008
With data recorded on board Mars Express, you can hear Phoenix descend on to the surface of the Red Planet. After being processed by the Mars Express Flight Control Team, the sounds of Phoenix descending are audible, loud and clear.

The data from the Mars Express Lander Communication system (MELACOM) that tracked Phoenix was received on Earth soon after the Phoenix landing.

As Mars Express flew over

This animation shows the signal of Phoenix’s descent, recorded by MELACOM.

The spike in the animation, between frequencies of 7 and 8 kiloHertz, shows the transmission from Phoenix itself.

The lander can be seen in the animation starting from about 342 s after the start time and disappears at about 1085 s. This shows Mars Express picking up on the Phoenix signal and tracking it while closing in on the lander; the closest Mars Express got to Phoenix was 1550 km.

As Mars Express flew away, the lander deployed its parachute, separated from it and landed, the signal from the lander was cut off.

The shift of the spike seen in the animation, is due to the so-called Doppler effect, which is very similar to what we hear when listening to the whistle of a passing train.

The signal was tracked successfully, even during the expected transmission blackout window of the descent, until the lander was out of Mars Express’s view. The transmission blackout window is caused because of ionisation around the probe, which builds up as the lander descends through the atmosphere and only very weak signals come through.

The rest of the recording, the start and the end, contains background noise generated by Mars Express itself.

Animation and audio file available at:

http://www.esa.int/SPECIALS/Mars_Express/SEMAWQ1YUFF_0.html

Science observations

During the descent, all of the capabilities of Mars Express were focussed on tracking Phoenix with MELACOM. Unfortunately, the science observations carried out during the descent did not lead to the anticipated results.

Apart from these observations, the Planetary Fourier Spectrometer (PFS) on board Mars Express has been collecting relevant data since 8 May this year in anticipation of the Phoenix landing. This includes information on the physical conditions of the Martian atmosphere (temperature, pressure and density) above the expected the landing site. This data was provided to NASA in support of their observations of the physical conditions in the atmosphere prior to landing.

Over the next few days, Mars Express will monitor Phoenix using MELACOM 15 more times; at least one of these will be used to demonstrate and confirm that the ESA spacecraft can be used as a data relay station for NASA, receiving data from the surface and transmitting test commands to the lander.

Detailed information about the descent and landing will be available once the data from all the fly-overs is processed and analysed over the next few weeks.

Michel Denis | alfa
Further information:
http://www.esa.int/SPECIALS/Mars_Express/SEMAWQ1YUFF_0.html

More articles from Physics and Astronomy:

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>