Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Superlattice Structure Enables High Performance Infrared Imaging

30.05.2008
Scientists at the Center for Quantum Devices (CQD) in the McCormick School of Engineering at Northwestern University have demonstrated for the first time a high-performance infrared imager, based on a Type II superlattice, which looks at wavelengths 20 times longer than visible light.

Researchers at center, led by Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science, say that such technology has the potential for broad applications in the detection of terrorist activities, such as use in night vision, target identification, and missile tracking.

Any object, including the human body, with a near-room temperature actively emits long wavelength (around 10 micron) infrared radiation (LWIR). Tracking this infrared radiation using high-speed infrared (IR) imagers would help to reveal thermal profiles of hidden targets or objects at night when no visible source is available. Such imagers also have potential use in medical applications where excessive heating or cooling in the body can indicate problems like inflammation, blood flow issues or even cancerous tissue.

In LWIR imaging applications, the dominant technologies are photodetectors based upon the HgCdTe (mercury cadmium telluride or MCT) material platform and the quantum well photoconductors (QWIP). Both of them have shown limitations that stimulated the research for alternative technologies. Type-II InAs/GaSb (indium arsenide/gallium antimonide) superlattices, first proposed by Nobel laureate Leo Esaki in 1973, became a potential for use in infrared detection in 1987. It wasn’t until semiconductor epitaxial growth techniques such as molecular beam epitaxy were sufficiently advanced in the 1990s that high-performance infrared photon detection based on these superlattices was fully demonstrated.

“The type-II superlattice will become the next generation infrared material replacing MCT technology,” says Razeghi. “MCT has many limitations, especially in the longer wavelength infrared range critical for missile detection.”

Razeghi’s research group has recently invented a new superlattice structure, called the M-structure, which boosted the performance of the type II superlattice to a new level. This new device structure is capable of detecting very low light intensity with high optical efficiency and exhibits an electrical noise level 10 times smaller than the original design. A LWIR 320x256 pixel focal plane array fabricated from this material has been able to differentiate temperature differences as low as 0.02 degrees Celsius. The camera was able to detect 74 percent of the incident photons, similar to other leading technologies.

Researchers recently presented their findings at the SPIE Photonics West Conference held in San Jose, CA on Jan. 19-24, 2008. This work was also published in the October 18, 2007 issue of the journal Applied Physics Letters.

The work performed at CQD has generated much interest in type-II superlattice research and has brought funding from the U.S. Missile Defense Agency, U.S. Air Force Research Laboratory, Office of Naval Research, and the Defense Advanced Research Projects Agency, as well as collaborations with Rockwell Scientific Company, Naval Research Laboratory, Airforce Research Laboratory, Jet Propulsion Laboratory, BAE, Lockheed, and Raytheon Company.

Kyle Delaney | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>