Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Superlattice Structure Enables High Performance Infrared Imaging

30.05.2008
Scientists at the Center for Quantum Devices (CQD) in the McCormick School of Engineering at Northwestern University have demonstrated for the first time a high-performance infrared imager, based on a Type II superlattice, which looks at wavelengths 20 times longer than visible light.

Researchers at center, led by Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science, say that such technology has the potential for broad applications in the detection of terrorist activities, such as use in night vision, target identification, and missile tracking.

Any object, including the human body, with a near-room temperature actively emits long wavelength (around 10 micron) infrared radiation (LWIR). Tracking this infrared radiation using high-speed infrared (IR) imagers would help to reveal thermal profiles of hidden targets or objects at night when no visible source is available. Such imagers also have potential use in medical applications where excessive heating or cooling in the body can indicate problems like inflammation, blood flow issues or even cancerous tissue.

In LWIR imaging applications, the dominant technologies are photodetectors based upon the HgCdTe (mercury cadmium telluride or MCT) material platform and the quantum well photoconductors (QWIP). Both of them have shown limitations that stimulated the research for alternative technologies. Type-II InAs/GaSb (indium arsenide/gallium antimonide) superlattices, first proposed by Nobel laureate Leo Esaki in 1973, became a potential for use in infrared detection in 1987. It wasn’t until semiconductor epitaxial growth techniques such as molecular beam epitaxy were sufficiently advanced in the 1990s that high-performance infrared photon detection based on these superlattices was fully demonstrated.

“The type-II superlattice will become the next generation infrared material replacing MCT technology,” says Razeghi. “MCT has many limitations, especially in the longer wavelength infrared range critical for missile detection.”

Razeghi’s research group has recently invented a new superlattice structure, called the M-structure, which boosted the performance of the type II superlattice to a new level. This new device structure is capable of detecting very low light intensity with high optical efficiency and exhibits an electrical noise level 10 times smaller than the original design. A LWIR 320x256 pixel focal plane array fabricated from this material has been able to differentiate temperature differences as low as 0.02 degrees Celsius. The camera was able to detect 74 percent of the incident photons, similar to other leading technologies.

Researchers recently presented their findings at the SPIE Photonics West Conference held in San Jose, CA on Jan. 19-24, 2008. This work was also published in the October 18, 2007 issue of the journal Applied Physics Letters.

The work performed at CQD has generated much interest in type-II superlattice research and has brought funding from the U.S. Missile Defense Agency, U.S. Air Force Research Laboratory, Office of Naval Research, and the Defense Advanced Research Projects Agency, as well as collaborations with Rockwell Scientific Company, Naval Research Laboratory, Airforce Research Laboratory, Jet Propulsion Laboratory, BAE, Lockheed, and Raytheon Company.

Kyle Delaney | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>