Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering researcher seeks answers to asteroid deflection

29.05.2008
An Asteroid Deflection Research Center (ADRC) has been established on the Iowa State campus to bring researchers from around the world to develop asteroid deflection technologies. The center was signed into effect in April by the Office of the Executive Vice President and Provost.

“In the early 1990s, scientists around the world initiated studies to assess and devise methods to prevent near-Earth objects from striking Earth,” said Bong Wie, the Vance D. Coffman Chair Professor in Aerospace Engineering and director of the center. “However, it is now 2008, and there is no consensus on how to reliably deflect them in a timely manner,” he noted.

Wie, whose research expertise includes space vehicle dynamics and control, modeling and control of large space structures, and solar sail flight control system development and mission design, joined the Iowa State faculty last August. “I am very happy that Professor Bong Wie has joined the faculty at ISU,” said Elizabeth Hoffman, executive vice president and provost. “His work on asteroid deflection is exciting and of great importance.”

The ADRC will host an International Symposium on Asteroid Deflection Technology in fall 2008. Scientists and engineers from NASA, the European Space Agency, academia, and the aerospace industry will be invited to the Iowa State campus to formulate a roadmap for developing asteroid deflection technologies.

Despite the lack of an immediate threat from an asteroid strike, scientific evidence suggests the importance of researching preventive measures. Sixty-five million years ago, a six-mile-wide asteroid struck near the Yucatan Peninsula in Mexico and created the 106-mile-diameter Chicxulub Crater. Most scientists now believe that a global climate change caused by this asteroid impact may have led to the dinosaur extinction. Seventy-four million years ago, a smaller one-mile-wide asteroid struck in central Iowa, creating the Manson Crater. Now covered with soil, it is the largest crater in North America at more than 23 miles across.

Just 100 years ago, June 30, 1908, an asteroid or comet estimated at 100–200 feet in diameter exploded in the skies above Tunguska, Siberia. Known as the Tunguska Event, the explosion flattened trees and killed other vegetation over a 500,000-acre area. But if the explosion had occurred four hours later, it would have destroyed St. Petersburg or Moscow with an equivalent energy level of about 500 Hiroshima nuclear bombs.

The potential for such devastation has astronomers scanning the skies to find and track asteroids that pose a danger, and it has Wie initiating this concerted research effort now before any asteroids are discovered heading toward Earth.

Last November, NASA reported 900 known potentially hazardous objects (PHOs), most of which are asteroids. PHOs are defined as objects larger than 492 feet in diameter whose trajectories bring them to within about 4.6 million miles of the Earth’s orbit. NASA scientists estimate the total population of PHOs to be around 20,000. “However,” Wie said, “the asteroid we have to worry about is the asteroid that we don’t know.”

“Developing technologies that can be used to prevent or mitigate threats from asteroids while also advancing space exploration is a challenge we accept as we work to assure a high quality of life for future generations,” said Mark J. Kushner, dean of Iowa State’s College of Engineering. “This research center serves as an excellent opportunity to provide leadership on an issue that has worldwide implications.”

According to Tom Shih, professor and chair of aerospace engineering, “the potential for a major catastrophe created by an asteroid impacting Earth is very real. It is a matter of when, and humankind must be prepared for it. Our aerospace engineering department strongly supports Professor Bong Wie’s effort in establishing this center to address the engineering and science issues of asteroid deflection.”

Both high-energy nuclear explosions and low-energy non-nuclear alternatives will be studied as deflection techniques. The nuclear approach, which is often assessed to be 10–100 times more effective than non-nuclear approaches as stated in NASA’s 2007 report to Congress, will be researched to verify its effectiveness and determine its practical viability, according to Wie.

“A 20-meter (66 feet) standoff distance is often mentioned in the literature for a maximum velocity change of a 1-kilometer (0.6 mile) asteroid. However, we have to determine how close the nuclear explosion must be to effectively change the orbital trajectories of asteroids of different types, sizes, and shapes,” Wie explained. “We will develop high-fidelity physical models to reliably predict the velocity change and fragmentation caused by a nuclear standoff explosion.”

The non-nuclear alternatives include kinetic impactors and slow-pull gravity tractors. Wie, who has previously worked on solar sail technology as applied to asteroid deflection, will present his recent study, “Multiple gravity tractors in halo orbits for towing a target asteroid,” at the American Institute of Aeronautics and Astronautics Astrodynamics Specialists Conference in August. His paper has been accepted for publication in the AIAA Journal of Guidance, Control, and Dynamics.

The chances of having to use deflection technologies on an asteroid in the near future are admittedly remote. Scientists estimate the frequency of an extinction-class (6 miles in diameter or larger) object striking Earth as once every 50–100 million years, and for a 200-foot or larger object as once every 100–500 years.

The technologies that will be developed, including precision orbital guidance and navigation and control, however, have other applications as well. These may include future advanced space vehicles that will carry astronauts to an asteroid or Mars and homeland security applications.

Bong Wie | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>