Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Oregon Physicists Don't Flip Spin but Find Possible Electron Switch

University of Oregon researchers trying to flip the spin of electrons with laser bursts lasting picoseconds (a trillionth of a second) instead found a way to manipulate and control the spin -- knowledge that may prove useful in a variety of new materials and technologies.

Physicists in recent years have been pursuing a variety of routes to tap electron spins for their potential use in quantum computers that can perform millions of computations at a time and store immense quantities of data or for use in emerging optic devices or spintronics.

"Spin is another dimension of electrons," said Hailin Wang, a professor of physics at the UO. "The electronics industry has depended on electron charges for more than 50 years. To make major improvements, we now need to go beyond charges to spin, which has been very important in physics but not used very often in applications."

Wang and his doctoral student Shannon O'Leary theorized that they could flip an electron's spin up to down, or vice versa, by using a nonlinear optical technique called transient differential transmission. They describe their "failure" to flip the spin and their unexpected discovery in Physical Review B, a journal devoted to condensed matter and materials physics.

The overall goal, Wang and O'Leary said, is to be able to force the spin to flip using light. Their studies involved the use of nonlinear optical processes of electron spin coherence in a modulation-doped CdTe quantum well -- semiconductor material formed from cadmium and tellurium, sandwiched in a crystalline compound between two other semiconductor barrier layers. A doped quantum well contains extra embedded electrons in a near two-dimensional state.

O'Leary initialized a spin in an experiment using a "gyro-like" arrangement with a short pulse of laser. At specific times, she hit the spin with another laser pulse with the absorption energy of an exciton (an electron-hole pair) or trion (a charged exciton). Hitting the spin with a third pulse allows them to study what impact the second pulse had on the spin.

"We know that in this particular system, excitons quickly convert into trions by binding to a free electron," O'Leary said. "One surprising aspect is that injecting trions directly does not manipulate the spin. So the manipulation effect has to do with the conversion of the excitons to trions."

The behaviors they discovered were unexpected but intriguing, Wang said. "We were not able to flip the spin, but what we found is something quite puzzling, quite unexpected, that was not supposed to happen. We now want to understand why the system works this way. This will require some more work. We wanted to get from point A to B, but we went to C."

The detour, however, "shows that we can manipulate the spin when we inject excitons at appropriate times in the precession cycle of the spin," O'Leary said. "The result gives scientists a new tool for manipulating spins, and it may prove to be a handy method because it simply requires shining a pulse of light of the appropriate energy at the right time."

The National Science Foundation and Army Research Office funded the research.

About the University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.

Sources: Hailin Wang, professor of physics, UO College of Arts and Sciences, 541-346-4758 or 4807;; Shannon O'Leary, 541-346-4807;

Links: Wang faculty page:; physics department:; College of Arts and Sciences:

Jim Barlow | newswise
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>