Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expansion of high tech materials

28.05.2008
Industrial applications are ever more frequently demanding materials of highest thermal stability. A precision interferometer has been developed in the Physikalisch-Technische Bundesanstalt (PTB) to exactly measure this property. With this instrument, the change in length can be determined with highest accuracy in an absolute measurement as a function of temperature, time and – if necessary – ambient pressure.
Thermally stable materials play an important role in dimensional metrology and in precision manufacturing. The currently highest requirements on the thermal stability of critical components are made in EUV lithography of reflection masks and mirrors. These are, therefore, based on substrates made of high tech glass/ceramics which are to exhibit a very low thermal expansion coefficient a (a

For the precise characterization of gauge-blockshaped measuring objects made of high tech materials, a precision interferometer was developed with the aim of measuring samples of up to 400 mm length with uncertainties in the sub-nanometer range. From such exact measurements of length, it is possible to calculate the thermal expansion coefficient as a function of the temperature with uncertainties of up to 2 • 10–10 • K–1. Furthermore, it is possible to get quantitative statements regarding the homogeneity of the thermal expansion, compressibility, length relaxations and also the long-term stability of samples.

Length measurements with sub-nm uncertainties demand, besides the application of frequencystabilized lasers, the consideration of influences whose uncertainty contributions are difficult to minimize. For this purpose, various methods have been developed in the PTB in the last few years and these have been integrated into the measuring process. A new autocollimation process is cited as an example and this ensures that the lightwaves reach the surfaces of the measuring objects exactly perpendicularly. The so-called cosine error is hereby lowered to under 10–11 • L. Furthermore during the electronic evaluation of the interference pattern, the exact assignment of the sample position to the camera pixel coordinates is considered. This is particularly important when it comes to measuring objects whose end faces are non-parallel and when the influence of small temperature-induced changes of the lateral sample position can be corrected. By taking the temperature-related influence of the deflection of the end plate wrung to the back into consideration, the precision could be increased further. When taking thermal expansion measurements on typical samples, length measurement uncertainties of 0.25 nm are now achieved.

In a recently completed international comparison measurement, the leading position of the PTB in the determination of thermal expansion coefficients was confirmed. The new possibilities for the precise characterization of high tech materials are already being used intensively by companies working in the fields of optics and precision manufacturing.

This text in the latest issue of PTB-news (08.2):
http://www.ptb.de/en/publikationen/news/html/news081/artikel/0814.htm
Contact:
Dr. Rene Schödel, PTB Working Group 5.44 Interferometry on Prismatic Bodies, Phone (0531) 592-5440, e-mail: rene.schoedel@ptb.de

Erika Schow | alfa
Further information:
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2008/pitext/pi080527b.html

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>