Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expansion of high tech materials

28.05.2008
Industrial applications are ever more frequently demanding materials of highest thermal stability. A precision interferometer has been developed in the Physikalisch-Technische Bundesanstalt (PTB) to exactly measure this property. With this instrument, the change in length can be determined with highest accuracy in an absolute measurement as a function of temperature, time and – if necessary – ambient pressure.
Thermally stable materials play an important role in dimensional metrology and in precision manufacturing. The currently highest requirements on the thermal stability of critical components are made in EUV lithography of reflection masks and mirrors. These are, therefore, based on substrates made of high tech glass/ceramics which are to exhibit a very low thermal expansion coefficient a (a

For the precise characterization of gauge-blockshaped measuring objects made of high tech materials, a precision interferometer was developed with the aim of measuring samples of up to 400 mm length with uncertainties in the sub-nanometer range. From such exact measurements of length, it is possible to calculate the thermal expansion coefficient as a function of the temperature with uncertainties of up to 2 • 10–10 • K–1. Furthermore, it is possible to get quantitative statements regarding the homogeneity of the thermal expansion, compressibility, length relaxations and also the long-term stability of samples.

Length measurements with sub-nm uncertainties demand, besides the application of frequencystabilized lasers, the consideration of influences whose uncertainty contributions are difficult to minimize. For this purpose, various methods have been developed in the PTB in the last few years and these have been integrated into the measuring process. A new autocollimation process is cited as an example and this ensures that the lightwaves reach the surfaces of the measuring objects exactly perpendicularly. The so-called cosine error is hereby lowered to under 10–11 • L. Furthermore during the electronic evaluation of the interference pattern, the exact assignment of the sample position to the camera pixel coordinates is considered. This is particularly important when it comes to measuring objects whose end faces are non-parallel and when the influence of small temperature-induced changes of the lateral sample position can be corrected. By taking the temperature-related influence of the deflection of the end plate wrung to the back into consideration, the precision could be increased further. When taking thermal expansion measurements on typical samples, length measurement uncertainties of 0.25 nm are now achieved.

In a recently completed international comparison measurement, the leading position of the PTB in the determination of thermal expansion coefficients was confirmed. The new possibilities for the precise characterization of high tech materials are already being used intensively by companies working in the fields of optics and precision manufacturing.

This text in the latest issue of PTB-news (08.2):
http://www.ptb.de/en/publikationen/news/html/news081/artikel/0814.htm
Contact:
Dr. Rene Schödel, PTB Working Group 5.44 Interferometry on Prismatic Bodies, Phone (0531) 592-5440, e-mail: rene.schoedel@ptb.de

Erika Schow | alfa
Further information:
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2008/pitext/pi080527b.html

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>