Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expansion of high tech materials

28.05.2008
Industrial applications are ever more frequently demanding materials of highest thermal stability. A precision interferometer has been developed in the Physikalisch-Technische Bundesanstalt (PTB) to exactly measure this property. With this instrument, the change in length can be determined with highest accuracy in an absolute measurement as a function of temperature, time and – if necessary – ambient pressure.
Thermally stable materials play an important role in dimensional metrology and in precision manufacturing. The currently highest requirements on the thermal stability of critical components are made in EUV lithography of reflection masks and mirrors. These are, therefore, based on substrates made of high tech glass/ceramics which are to exhibit a very low thermal expansion coefficient a (a

For the precise characterization of gauge-blockshaped measuring objects made of high tech materials, a precision interferometer was developed with the aim of measuring samples of up to 400 mm length with uncertainties in the sub-nanometer range. From such exact measurements of length, it is possible to calculate the thermal expansion coefficient as a function of the temperature with uncertainties of up to 2 • 10–10 • K–1. Furthermore, it is possible to get quantitative statements regarding the homogeneity of the thermal expansion, compressibility, length relaxations and also the long-term stability of samples.

Length measurements with sub-nm uncertainties demand, besides the application of frequencystabilized lasers, the consideration of influences whose uncertainty contributions are difficult to minimize. For this purpose, various methods have been developed in the PTB in the last few years and these have been integrated into the measuring process. A new autocollimation process is cited as an example and this ensures that the lightwaves reach the surfaces of the measuring objects exactly perpendicularly. The so-called cosine error is hereby lowered to under 10–11 • L. Furthermore during the electronic evaluation of the interference pattern, the exact assignment of the sample position to the camera pixel coordinates is considered. This is particularly important when it comes to measuring objects whose end faces are non-parallel and when the influence of small temperature-induced changes of the lateral sample position can be corrected. By taking the temperature-related influence of the deflection of the end plate wrung to the back into consideration, the precision could be increased further. When taking thermal expansion measurements on typical samples, length measurement uncertainties of 0.25 nm are now achieved.

In a recently completed international comparison measurement, the leading position of the PTB in the determination of thermal expansion coefficients was confirmed. The new possibilities for the precise characterization of high tech materials are already being used intensively by companies working in the fields of optics and precision manufacturing.

This text in the latest issue of PTB-news (08.2):
http://www.ptb.de/en/publikationen/news/html/news081/artikel/0814.htm
Contact:
Dr. Rene Schödel, PTB Working Group 5.44 Interferometry on Prismatic Bodies, Phone (0531) 592-5440, e-mail: rene.schoedel@ptb.de

Erika Schow | alfa
Further information:
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2008/pitext/pi080527b.html

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>