Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Examines the Physics of Carbon Nanotubes

28.05.2008
Carbon nanotubes, described as the reigning celebrity of the advanced materials world, are all the rage. Recently researchers at Rice University and Rensselaer Polytechnic Institute used them to make the “blackest black” — the darkest known material, reflecting only 0.045 percent of all light shined on it.

Sandia National Laboratories is also in on the carbon nanotube game, with research led by physicist François Léonard. Léonard has considerable experience in the subject, so much that he wrote the book on it — literally. He’s the author of a forthcoming work, Physics of Carbon Nanotube Devices, which could become the definitive text on the topic.

Carbon nanotubes are long thin cylinders composed entirely of carbon atoms. While their diameters are in the nanometer range (1-10), they can be very long, up to centimeters in length. The carbon-carbon bond is very strong, making carbon nanotubes very robust and resistant to any kind of deformation. The properties of other single-element materials are obvious — gold is a metal and silicon is a semiconductor, for example. Carbon nanotubes, on the other hand, have a sort of dual personality not found in other materials made from a single element. They’re special because they can be either metallic or semiconducting.

Léonard explains that this results from the actual structure of a carbon nanotube; the way the atoms are arranged around the tube determines its electronic properties. To explain this concept to a group of undergraduates at the University of California, Berkeley, he uses three rolls of chicken wire, each cut at a different angle. The chicken wire represents the sheet of graphene from which the nanotube is cut. The angle of that cut creates a different bond geometry along the nanotube, which results in different properties.

Working in uncharted territory

Léonard’s experience with carbon nanotubes began when the field was just emerging. While the discovery of carbon nanotubes is credited to Japanese physicist Sumio Iijima in 1991, work on applications didn’t begin until the late 1990s. Léonard was at IBM as a postdoc when researchers there built the first transistor from carbon nanotubes.

As a theoretical physicist, Léonard was working in uncharted territory. From the beginning, he worked on modeling approaches to understand how carbon nanotubes might behave in certain applications. He joined Sandia in 2000, where he has continued his carbon nanotube research.

The semiconducting side of carbon nanotubes holds a lot of promise for the development of new nanoelectronic devices. “A carbon nanotube creates a transistor that is only one nanometer wide,” says Léonard. “This makes it possible, in principle, to achieve very high device densities compared with the current state of the art.” The field emission properties of carbon nanotubes are also exciting. Flat panel displays are typically made from a high density of sharp tips, to which high voltage is applied to extract electrons. These electrons strike and activate the pixels in the screen. Carbon nanotubes can serve this purpose because they are very sharp, long, and can sustain high fields and high temperatures.

‘Layla’ on a nanotube receiver

Researchers have demonstrated the ability to assemble such devices with a single carbon nanotube. At a recent conference, one scientist played Eric Clapton’s “Layla” on a carbon nanotube device acting as a radio receiver.

Another potential use is in chemical and biological sensors. Carbon nanotubes, because of their small diameter, can serve as very sensitive detectors, with the ability to detect a single molecule of a target substance. DNA detection has also been demonstrated. Currently, Léonard is leading a team to develop optical detection using carbon nanotubes. The project is a partnership with Lockheed Martin.

Unique electronic properties

Semiconducting carbon nanotubes have many properties that make them attractive for optical detection. They have unique electronic properties that favor light absorption. In addition, the wavelength over which light is absorbed can be controlled with nanotubes of different diameters. Importantly, the device fabrication process could be entirely compatible with fabrication processes used by the semiconductor industry. In addition to carbon nanotubes, Léonard is interested in electronic transport in other nanostructures — carbon nanotubes as well as nanowires and single molecules. The question, he says, is how does current pass across nanostructures? How is transport of electrons different than in conventional materials?

Léonard’s book is expected to be out by the end of August. See the publisher’s website here for details.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Mike Janes | newswise
Further information:
http://www.sandia.gov

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>