Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Examines the Physics of Carbon Nanotubes

28.05.2008
Carbon nanotubes, described as the reigning celebrity of the advanced materials world, are all the rage. Recently researchers at Rice University and Rensselaer Polytechnic Institute used them to make the “blackest black” — the darkest known material, reflecting only 0.045 percent of all light shined on it.

Sandia National Laboratories is also in on the carbon nanotube game, with research led by physicist François Léonard. Léonard has considerable experience in the subject, so much that he wrote the book on it — literally. He’s the author of a forthcoming work, Physics of Carbon Nanotube Devices, which could become the definitive text on the topic.

Carbon nanotubes are long thin cylinders composed entirely of carbon atoms. While their diameters are in the nanometer range (1-10), they can be very long, up to centimeters in length. The carbon-carbon bond is very strong, making carbon nanotubes very robust and resistant to any kind of deformation. The properties of other single-element materials are obvious — gold is a metal and silicon is a semiconductor, for example. Carbon nanotubes, on the other hand, have a sort of dual personality not found in other materials made from a single element. They’re special because they can be either metallic or semiconducting.

Léonard explains that this results from the actual structure of a carbon nanotube; the way the atoms are arranged around the tube determines its electronic properties. To explain this concept to a group of undergraduates at the University of California, Berkeley, he uses three rolls of chicken wire, each cut at a different angle. The chicken wire represents the sheet of graphene from which the nanotube is cut. The angle of that cut creates a different bond geometry along the nanotube, which results in different properties.

Working in uncharted territory

Léonard’s experience with carbon nanotubes began when the field was just emerging. While the discovery of carbon nanotubes is credited to Japanese physicist Sumio Iijima in 1991, work on applications didn’t begin until the late 1990s. Léonard was at IBM as a postdoc when researchers there built the first transistor from carbon nanotubes.

As a theoretical physicist, Léonard was working in uncharted territory. From the beginning, he worked on modeling approaches to understand how carbon nanotubes might behave in certain applications. He joined Sandia in 2000, where he has continued his carbon nanotube research.

The semiconducting side of carbon nanotubes holds a lot of promise for the development of new nanoelectronic devices. “A carbon nanotube creates a transistor that is only one nanometer wide,” says Léonard. “This makes it possible, in principle, to achieve very high device densities compared with the current state of the art.” The field emission properties of carbon nanotubes are also exciting. Flat panel displays are typically made from a high density of sharp tips, to which high voltage is applied to extract electrons. These electrons strike and activate the pixels in the screen. Carbon nanotubes can serve this purpose because they are very sharp, long, and can sustain high fields and high temperatures.

‘Layla’ on a nanotube receiver

Researchers have demonstrated the ability to assemble such devices with a single carbon nanotube. At a recent conference, one scientist played Eric Clapton’s “Layla” on a carbon nanotube device acting as a radio receiver.

Another potential use is in chemical and biological sensors. Carbon nanotubes, because of their small diameter, can serve as very sensitive detectors, with the ability to detect a single molecule of a target substance. DNA detection has also been demonstrated. Currently, Léonard is leading a team to develop optical detection using carbon nanotubes. The project is a partnership with Lockheed Martin.

Unique electronic properties

Semiconducting carbon nanotubes have many properties that make them attractive for optical detection. They have unique electronic properties that favor light absorption. In addition, the wavelength over which light is absorbed can be controlled with nanotubes of different diameters. Importantly, the device fabrication process could be entirely compatible with fabrication processes used by the semiconductor industry. In addition to carbon nanotubes, Léonard is interested in electronic transport in other nanostructures — carbon nanotubes as well as nanowires and single molecules. The question, he says, is how does current pass across nanostructures? How is transport of electrons different than in conventional materials?

Léonard’s book is expected to be out by the end of August. See the publisher’s website here for details.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Mike Janes | newswise
Further information:
http://www.sandia.gov

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>