Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Europeans unite to tap early universe for secrets of fundamental physic

Aim to produce new generation of astronomer that understands theory and observation

The future of fundamental physics research lies in observing the early universe and developing models that explain the new data obtained. The availability of much higher resolution data from closer to the start of the universe is creating the potential for further significant theoretical breakthroughs and progress resolving some of the most difficult and intractable questions in physics. But this requires much more interaction between astronomical theory and observation, and in particular the development of a new breed of astronomer who understands both.

This was the key conclusion from a recent workshop organised by the European Science Foundation (ESF), bringing together experts in cosmology, astrophysics and particle physics. “I think the realization of how important this is, and of how much needs to be done to get to that stage, will be the main long-term legacy of the workshop,” noted Carlos Martins, convenor of the ESF workshop. “In particular, a lot of work needs to be done in order to provide a stronger 'theoretical underpinning' for future observational work. Ultimately this means that when training the next generation of researchers in this area, a lot more effort needs to be put into forming 'bilingual' researchers, that are fluent both in the language of observations and in that of theory.”

In effect astronomy is returning to its roots, since the early great discoveries were made by the likes of Galileo for whom theory and observation were two sides of the same coin. The field subsequently split into two, with theorists and observers becoming divorced and ceasing to communicate effectively with each other. Now though the emergence of highly sophisticated observing platforms, capable of making different types of measurement depending on theoretical considerations, means that the two are once again becoming closely entwined.

Two key developments are the ability to take the observing instruments into space, where more accurate observations can be made beyond the influence of the earth’s atmosphere and magnetic field, and availability of high precision atomic clocks for measurement of timing down to nanoseconds. At the same time it has become clear there is a limit to how much can be discovered in earth-bound laboratories, even those as big as the Large Hadron Particle Accelerator run by CERN, the European Organization for Nuclear Research, in Switzerland. The early universe on the other hand is a natural laboratory with the required scale and energy, providing the potential for probing deeper into fundamental processes relating to matter and energy. “The idea was to bring together the top European expertise in cosmology, astrophysics and particle physics, get the various sub-communities to be aware of what is being done 'elsewhere', and focus our efforts on using the early universe as a laboratory in which we can probe fundamental physics - in ways that we'll never be able to do if we restrict ourselves to laboratory tests,” said Martins.

The workshop also discussed some of the fundamental questions that these new observations could help resolve, notably whether or not scalar fields exist across the whole the universe. Unlike say gravitational or magnetic fields, which have both strength and direction, scalar fields have strength alone, varying from point to point. They definitely exist within some closed systems, such as the temperature distribution within the earth’s atmosphere, but it is not yet known whether they exist on the scale of the universe. As Martins pointed out, this is a vital question because the existence of scalar fields could help explain how the universe developed after the Big Bang and became as we observe it today. For example scalar fields could explain the existence of dark matter and energy, which can only be observed indirectly from their gravitational effects on the part of the universe we can see.

New observations could also help confirm aspects of current theories, such as the existence of gravitational waves as predicted by Einstein’s General Relativity. Gravitational waves are supposed to be ripples through space time radiating outwards from a moving object. However the ripples are so small as to be very difficult to measure, with the only observational evidence so far coming from pulsars, which are very dense binary neutron stars revolving around each other. The revolution of pulsars appears to slow down in a manner consistent with the existence of gravitational waves causing them to lose energy, but further confirmation is needed.

Finally there is also the prospect of making further progress in the field of astronomy itself, for example by using space borne atomic clocks to calibrate advanced spectrographs that in turn will be used to search for “extra-solar” planets in neighbouring star systems.

Carlos Martins | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>