Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europeans unite to tap early universe for secrets of fundamental physic

27.05.2008
Aim to produce new generation of astronomer that understands theory and observation

The future of fundamental physics research lies in observing the early universe and developing models that explain the new data obtained. The availability of much higher resolution data from closer to the start of the universe is creating the potential for further significant theoretical breakthroughs and progress resolving some of the most difficult and intractable questions in physics. But this requires much more interaction between astronomical theory and observation, and in particular the development of a new breed of astronomer who understands both.

This was the key conclusion from a recent workshop organised by the European Science Foundation (ESF), bringing together experts in cosmology, astrophysics and particle physics. “I think the realization of how important this is, and of how much needs to be done to get to that stage, will be the main long-term legacy of the workshop,” noted Carlos Martins, convenor of the ESF workshop. “In particular, a lot of work needs to be done in order to provide a stronger 'theoretical underpinning' for future observational work. Ultimately this means that when training the next generation of researchers in this area, a lot more effort needs to be put into forming 'bilingual' researchers, that are fluent both in the language of observations and in that of theory.”

In effect astronomy is returning to its roots, since the early great discoveries were made by the likes of Galileo for whom theory and observation were two sides of the same coin. The field subsequently split into two, with theorists and observers becoming divorced and ceasing to communicate effectively with each other. Now though the emergence of highly sophisticated observing platforms, capable of making different types of measurement depending on theoretical considerations, means that the two are once again becoming closely entwined.

Two key developments are the ability to take the observing instruments into space, where more accurate observations can be made beyond the influence of the earth’s atmosphere and magnetic field, and availability of high precision atomic clocks for measurement of timing down to nanoseconds. At the same time it has become clear there is a limit to how much can be discovered in earth-bound laboratories, even those as big as the Large Hadron Particle Accelerator run by CERN, the European Organization for Nuclear Research, in Switzerland. The early universe on the other hand is a natural laboratory with the required scale and energy, providing the potential for probing deeper into fundamental processes relating to matter and energy. “The idea was to bring together the top European expertise in cosmology, astrophysics and particle physics, get the various sub-communities to be aware of what is being done 'elsewhere', and focus our efforts on using the early universe as a laboratory in which we can probe fundamental physics - in ways that we'll never be able to do if we restrict ourselves to laboratory tests,” said Martins.

The workshop also discussed some of the fundamental questions that these new observations could help resolve, notably whether or not scalar fields exist across the whole the universe. Unlike say gravitational or magnetic fields, which have both strength and direction, scalar fields have strength alone, varying from point to point. They definitely exist within some closed systems, such as the temperature distribution within the earth’s atmosphere, but it is not yet known whether they exist on the scale of the universe. As Martins pointed out, this is a vital question because the existence of scalar fields could help explain how the universe developed after the Big Bang and became as we observe it today. For example scalar fields could explain the existence of dark matter and energy, which can only be observed indirectly from their gravitational effects on the part of the universe we can see.

New observations could also help confirm aspects of current theories, such as the existence of gravitational waves as predicted by Einstein’s General Relativity. Gravitational waves are supposed to be ripples through space time radiating outwards from a moving object. However the ripples are so small as to be very difficult to measure, with the only observational evidence so far coming from pulsars, which are very dense binary neutron stars revolving around each other. The revolution of pulsars appears to slow down in a manner consistent with the existence of gravitational waves causing them to lose energy, but further confirmation is needed.

Finally there is also the prospect of making further progress in the field of astronomy itself, for example by using space borne atomic clocks to calibrate advanced spectrographs that in turn will be used to search for “extra-solar” planets in neighbouring star systems.

Carlos Martins | EurekAlert!
Further information:
http://www.astro.up.pt
http://www.astro.up.pt/esf2008

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>