Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europeans unite to tap early universe for secrets of fundamental physics

26.05.2008
Aim to produce new generation of astronomer that understands theory and observation

The future of fundamental physics research lies in observing the early universe and developing models that explain the new data obtained.

The availability of much higher resolution data from closer to the start of the universe is creating the potential for further significant theoretical breakthroughs and progress resolving some of the most difficult and intractable questions in physics. But this requires much more interaction between astronomical theory and observation, and in particular the development of a new breed of astronomer who understands both.

This was the key conclusion from a recent workshop organised by the European Science Foundation (ESF), bringing together experts in cosmology, astrophysics and particle physics. "I think the realization of how important this is, and of how much needs to be done to get to that stage, will be the main long-term legacy of the workshop," noted Carlos Martins, convenor of the ESF workshop. "In particular, a lot of work needs to be done in order to provide a stronger 'theoretical underpinning' for future observational work. Ultimately this means that when training the next generation of researchers in this area, a lot more effort needs to be put into forming 'bilingual' researchers, that are fluent both in the language of observations and in that of theory."

In effect astronomy is returning to its roots, since the early great discoveries were made by the likes of Galileo for whom theory and observation were two sides of the same coin. The field subsequently split into two, with theorists and observers becoming divorced and ceasing to communicate effectively with each other. Now though the emergence of highly sophisticated observing platforms, capable of making different types of measurement depending on theoretical considerations, means that the two are once again becoming closely entwined.

Two key developments are the ability to take the observing instruments into space, where more accurate observations can be made beyond the influence of the earth's atmosphere and magnetic field, and availability of high precision atomic clocks for measurement of timing down to nanoseconds. At the same time it has become clear there is a limit to how much can be discovered in earth-bound laboratories, even those as big as the Large Hadron Particle Accelerator run by CERN, the European Organization for Nuclear Research, in Switzerland. The early universe on the other hand is a natural laboratory with the required scale and energy, providing the potential for probing deeper into fundamental processes relating to matter and energy. "The idea was to bring together the top European expertise in cosmology, astrophysics and particle physics, get the various sub-communities to be aware of what is being done 'elsewhere', and focus our efforts on using the early universe as a laboratory in which we can probe fundamental physics - in ways that we'll never be able to do if we restrict ourselves to laboratory tests," said Martins.

The workshop also discussed some of the fundamental questions that these new observations could help resolve, notably whether or not scalar fields exist across the whole the universe. Unlike say gravitational or magnetic fields, which have both strength and direction, scalar fields have strength alone, varying from point to point. They definitely exist within some closed systems, such as the temperature distribution within the earth's atmosphere, but it is not yet known whether they exist on the scale of the universe. As Martins pointed out, this is a vital question because the existence of scalar fields could help explain how the universe developed after the Big Bang and became as we observe it today. For example scalar fields could explain the existence of dark matter and energy, which can only be observed indirectly from their gravitational effects on the part of the universe we can see.

New observations could also help confirm aspects of current theories, such as the existence of gravitational waves as predicted by Einstein's General Relativity. Gravitational waves are supposed to be ripples through space time radiating outwards from a moving object. However the ripples are so small as to be very difficult to measure, with the only observational evidence so far coming from pulsars, which are very dense binary neutron stars revolving around each other. The revolution of pulsars appears to slow down in a manner consistent with the existence of gravitational waves causing them to lose energy, but further confirmation is needed.

Finally there is also the prospect of making further progress in the field of astronomy itself, for example by using space borne atomic clocks to calibrate advanced spectrographs that in turn will be used to search for "extra-solar" planets in neighbouring star systems.

Thomas Lau | alfa
Further information:
http://www.astro.up.pt/esf2008

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record

20.02.2017 | Power and Electrical Engineering

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>