Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab experiments shed light on proton spin mystery

04.07.2002


It’s a conundrum that’s confounded the curious for several decades. In the past, some called it a crisis. More recently, it’s come to be known as a puzzle: a mystery that has occupied the minds of thousands of researchers worldwide.



Call it the Case of the Missing Spin. A mathematical property of all subatomic particles, including quarks, spin is roughly equivalent to the physical rotation of an object in the macroscopic world.

Physicists have long wondered how the properties (including the spin) of the protons and neutrons inside an atomic nucleus can be explained in terms of quarks, their most elementary building blocks.


Although seemingly limited to the realm of the infinitesimal, those properties eventually affect all things of "normal" size, since ordinary matter is comprised of these smallest building blocks. Now, a series of experiments recently concluded in Hall B may be leading researchers toward a better understanding of the spin of protons and neutrons.

"The effort in the past has always been to see how much of the proton spin was coming from the quarks," says Volker Burkert, Hall B senior scientist and an EG1 spokesperson. "The goal was and remains learning about the internal structure of protons and neutrons. The extremely surprising thing we found out is that the spin of the quarks is not contributing much to the proton or neutron spin: maybe 25 percent, or even less. That is contrary to the expectation of most scientists working in the field, and is unexplained in simple models."

In a landmark program called "EG1" (comprised of several related experiments) scientists used the sophisticated particle detector at the heart of Jefferson Lab’s Hall B to acquire a much more detailed picture of the proton’s internal structure. Called CLAS, for CEBAF Large Acceptance Spectrometer, the detector’s components include time-of-flight counters, energy-measuring calorimeters and particle-tracking drift chambers. CLAS records, on average, 2,200 particle interactions per second on 40,000 data channels. And during EG1, there were times the detector actually recorded up to 4,000 interactions per second.

To derive their EG1 data, researchers collected 26 billion "events," or interactions, over the total running time of 10 months. The first series of experiments, EG1a, took three months and concluded in December 1998, with 3 billion events on tape. The second run, EG1b, took seven months to complete, ending this past April 20 and recording 23 billion events.

"By the time we analyze the data we just took, we should end up making a major contribution to the understanding of proton structure," says Sebastian Kuhn, the EG1 experimental coordinator and associate professor of physics at Old Dominion University. "What we’re looking at is the transition between the microscopic and the submicroscopic."

The medium view

Seen individually, at high resolution and at small distances, quarks are point-like, and appear independent from each other. But subatomic particles (like protons) are essentially "built" at medium distances; that is, the interactions of one or more quark varieties at intermediate ranges determine the structures of protons and neutrons. It is at these distances that the quarks are coupled to one another, like springs in a mattress that move together in response to weight.

Scientists think that the "missing" spin could in fact be hidden in plain view, a component of the complex, extended structures that include quarks and the quark-binding particles known as gluons. As quarks move around, they may exchange gluons at medium distances. By understanding such interactions, and how they determine and affect spin, scientists will have a far clearer knowledge of how protons and neutrons hold together inside a nucleus, enabling atoms, and eventually molecules, to form and endure.

"If you think of a motor or a watch, you can take it apart and see all the pieces," Kuhn says. "But that doesn’t tell you how the watch works. You need to know how all the parts work together. That’s the point of the EG1 experiments, which probe medium distances so we see what’s happening in the transition region, where quarks are no longer free and individual, but conspire to form protons and their resonant excited states."

A technical challenge and accomplishment of the EG1 experiments was the construction of a polarized target with which photons generated during the experiment could interact, producing far more useful data than was the case in past attempts. Polarization refers to the alignment of spin, insuring that particles within an atomic nucleus spin in the same direction. An international collaboration of researchers from JLab, and universities in Virginia and Italy used ammonia that, when place in a strong magnetic field, created the desired polarization.

"This experiment was a massive effort, involving more than 100 collaborators preparing the apparatus, planning each step of the experiment, and taking data, around the clock, for 7 months," Kuhn comments. This work will be matched by an equally large effort to analyze the data stored on computer tapes and to extract the vast amount of information they contain.

"This work will go on for several years (at least) and should enable us to take the next big step in our understanding of proton and neutron structure. Additional experiments are ongoing or planned in all three halls at Jefferson Lab," Volker Burkert notes. "Together with the results from many other JLab experiments, and utilizing new developments in theory, we hope to make a major contribution toward a fundamental understanding of the nucleon structure from the smallest to the largest distance scale. This is exactly the kind of science Jefferson Lab was built to do."

Linda Ware | EurekAlert!

More articles from Physics and Astronomy:

nachricht Nanotechnology for energy materials: Electrodes like leaf veins
27.09.2016 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht First quantum photonic circuit with electrically driven light source
27.09.2016 | Westfälische Wilhelms-Universität Münster

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>