Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hungry magnet, detector package will feed on subatomic particles at Jefferson Lab

04.07.2002


Anything over eight feet tall, six feet wide and weighing over 20 tons might be expected to have a healthy appetite. But no traditional foods are ingested by this behemoth. For the BigBite magnet, the nourishment of choice is subatomic particles, and lots of them. The BigBite spectrometer, which consists of the magnet along with its detectors, will be able to discern scattered particles over a range of energies and angles far greater than can be obtained with the other spectrometers used in Jefferson Lab’s Hall A.



BigBite is the latest addition to the Department of Energy’s Jefferson Lab family of particle detectors. It comes via the Netherlands’ National Institute for Nuclear and High Energy Physics, NIKHEF, in Amsterdam which commissioned the magnet’s construction by Russian scientists in 1994. When the NIKHEF accelerator ceased operations in 1999, the institute sold the magnet to Jefferson Lab. The magnet was stored until, with the approval of a trio of Hall A experiments, researchers began refurbishing the magnet and building the associated particle detectors.

"BigBite will be able to work with the Hall A high resolution spectrometers or stand alone," says Douglas Higinbotham, the Hall A staff scientist who is coordinating the BigBite project. "There are three upcoming experiments that will definitely put BigBite through its paces. Four other experiments, proposed but not yet approved by the Lab’s program advisory committee, also wish to use BigBite."


Unlike the other Hall A spectrometers, BigBite has no focusing properties. While this allows BigBite to easily detect particles over a large range of angles and energies, the lack of focusing means BigBite will not be able to determine these quantities as precisely as the high resolution, small-acceptance Hall A spectrometers. For the approved BigBite experiments, large angular and energy coverage with moderate resolution is exactly what is required.

The precise fit of the BigBite in Hall A will be tight, since researchers require that the magnet be located one meter from the Hall’s scattering chamber. The scattering chamber is where the Lab’s electron beam collides with targets and the out going particles are produced. The placement of BigBite will require the construction of a special platform and cantilevered arm so that the spectrometer can be maneuvered into position for operation. Also, the observational window in the Hall’s scattering chamber will need to be enlarged to accommodate BigBite’s large angular view.

"The project," says Higinbotham, "wouldn’t be possible without the ongoing and substantial support from institutions and universities worldwide that are contributing equipment and personnel." The Massachusetts Institute of Technology has a graduate student and a post-doctoral research scientist stationed at Jefferson Lab working full time on the project. Tel Aviv and Glasgow Universities are building the particle detectors needed for the first experiment and the University of Virginia is working on the more precise detectors required for the subsequent experiments. The University of Virginia is collaborating with Florida International and California State Universities to develop the new scattering chamber and target systems.

"Without user support this project couldn’t be done," Higinbotham asserts. "It’s very much an international effort. And as more experiments are proposed, the project has been gaining collaborators willing to help with the construction effort. The number of new proposals has been very encouraging. The project is feeding on itself."

BigBite is scheduled for installation in Hall A by late fall 2002. Testing and commissioning will follow. If everything progresses as planned, the first of the three approved BigBite experiments should commence in fall 2003.

Linda Ware | EurekAlert!

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>