Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hungry magnet, detector package will feed on subatomic particles at Jefferson Lab


Anything over eight feet tall, six feet wide and weighing over 20 tons might be expected to have a healthy appetite. But no traditional foods are ingested by this behemoth. For the BigBite magnet, the nourishment of choice is subatomic particles, and lots of them. The BigBite spectrometer, which consists of the magnet along with its detectors, will be able to discern scattered particles over a range of energies and angles far greater than can be obtained with the other spectrometers used in Jefferson Lab’s Hall A.

BigBite is the latest addition to the Department of Energy’s Jefferson Lab family of particle detectors. It comes via the Netherlands’ National Institute for Nuclear and High Energy Physics, NIKHEF, in Amsterdam which commissioned the magnet’s construction by Russian scientists in 1994. When the NIKHEF accelerator ceased operations in 1999, the institute sold the magnet to Jefferson Lab. The magnet was stored until, with the approval of a trio of Hall A experiments, researchers began refurbishing the magnet and building the associated particle detectors.

"BigBite will be able to work with the Hall A high resolution spectrometers or stand alone," says Douglas Higinbotham, the Hall A staff scientist who is coordinating the BigBite project. "There are three upcoming experiments that will definitely put BigBite through its paces. Four other experiments, proposed but not yet approved by the Lab’s program advisory committee, also wish to use BigBite."

Unlike the other Hall A spectrometers, BigBite has no focusing properties. While this allows BigBite to easily detect particles over a large range of angles and energies, the lack of focusing means BigBite will not be able to determine these quantities as precisely as the high resolution, small-acceptance Hall A spectrometers. For the approved BigBite experiments, large angular and energy coverage with moderate resolution is exactly what is required.

The precise fit of the BigBite in Hall A will be tight, since researchers require that the magnet be located one meter from the Hall’s scattering chamber. The scattering chamber is where the Lab’s electron beam collides with targets and the out going particles are produced. The placement of BigBite will require the construction of a special platform and cantilevered arm so that the spectrometer can be maneuvered into position for operation. Also, the observational window in the Hall’s scattering chamber will need to be enlarged to accommodate BigBite’s large angular view.

"The project," says Higinbotham, "wouldn’t be possible without the ongoing and substantial support from institutions and universities worldwide that are contributing equipment and personnel." The Massachusetts Institute of Technology has a graduate student and a post-doctoral research scientist stationed at Jefferson Lab working full time on the project. Tel Aviv and Glasgow Universities are building the particle detectors needed for the first experiment and the University of Virginia is working on the more precise detectors required for the subsequent experiments. The University of Virginia is collaborating with Florida International and California State Universities to develop the new scattering chamber and target systems.

"Without user support this project couldn’t be done," Higinbotham asserts. "It’s very much an international effort. And as more experiments are proposed, the project has been gaining collaborators willing to help with the construction effort. The number of new proposals has been very encouraging. The project is feeding on itself."

BigBite is scheduled for installation in Hall A by late fall 2002. Testing and commissioning will follow. If everything progresses as planned, the first of the three approved BigBite experiments should commence in fall 2003.

Linda Ware | EurekAlert!

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>