Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hungry magnet, detector package will feed on subatomic particles at Jefferson Lab

04.07.2002


Anything over eight feet tall, six feet wide and weighing over 20 tons might be expected to have a healthy appetite. But no traditional foods are ingested by this behemoth. For the BigBite magnet, the nourishment of choice is subatomic particles, and lots of them. The BigBite spectrometer, which consists of the magnet along with its detectors, will be able to discern scattered particles over a range of energies and angles far greater than can be obtained with the other spectrometers used in Jefferson Lab’s Hall A.



BigBite is the latest addition to the Department of Energy’s Jefferson Lab family of particle detectors. It comes via the Netherlands’ National Institute for Nuclear and High Energy Physics, NIKHEF, in Amsterdam which commissioned the magnet’s construction by Russian scientists in 1994. When the NIKHEF accelerator ceased operations in 1999, the institute sold the magnet to Jefferson Lab. The magnet was stored until, with the approval of a trio of Hall A experiments, researchers began refurbishing the magnet and building the associated particle detectors.

"BigBite will be able to work with the Hall A high resolution spectrometers or stand alone," says Douglas Higinbotham, the Hall A staff scientist who is coordinating the BigBite project. "There are three upcoming experiments that will definitely put BigBite through its paces. Four other experiments, proposed but not yet approved by the Lab’s program advisory committee, also wish to use BigBite."


Unlike the other Hall A spectrometers, BigBite has no focusing properties. While this allows BigBite to easily detect particles over a large range of angles and energies, the lack of focusing means BigBite will not be able to determine these quantities as precisely as the high resolution, small-acceptance Hall A spectrometers. For the approved BigBite experiments, large angular and energy coverage with moderate resolution is exactly what is required.

The precise fit of the BigBite in Hall A will be tight, since researchers require that the magnet be located one meter from the Hall’s scattering chamber. The scattering chamber is where the Lab’s electron beam collides with targets and the out going particles are produced. The placement of BigBite will require the construction of a special platform and cantilevered arm so that the spectrometer can be maneuvered into position for operation. Also, the observational window in the Hall’s scattering chamber will need to be enlarged to accommodate BigBite’s large angular view.

"The project," says Higinbotham, "wouldn’t be possible without the ongoing and substantial support from institutions and universities worldwide that are contributing equipment and personnel." The Massachusetts Institute of Technology has a graduate student and a post-doctoral research scientist stationed at Jefferson Lab working full time on the project. Tel Aviv and Glasgow Universities are building the particle detectors needed for the first experiment and the University of Virginia is working on the more precise detectors required for the subsequent experiments. The University of Virginia is collaborating with Florida International and California State Universities to develop the new scattering chamber and target systems.

"Without user support this project couldn’t be done," Higinbotham asserts. "It’s very much an international effort. And as more experiments are proposed, the project has been gaining collaborators willing to help with the construction effort. The number of new proposals has been very encouraging. The project is feeding on itself."

BigBite is scheduled for installation in Hall A by late fall 2002. Testing and commissioning will follow. If everything progresses as planned, the first of the three approved BigBite experiments should commence in fall 2003.

Linda Ware | EurekAlert!

More articles from Physics and Astronomy:

nachricht Subnano lead particles show peculiar decay behavior
25.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Getting electrons to move in a semiconductor
25.04.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>