Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hs and OHs in the spotlight

23.05.2008
Dutch researcher Mark van der Loo has investigated the influence of light on the behaviour of small molecules and has calculated the effect of light for several types of molecules.

His theoretical research into light-induced processes in the hydroxyl radical (OH), the hydrogen molecule (H2) and nitrous oxide (N2O) has directly contributed to a better understanding of chemical processes taking place on Earth as well as in the universe.

The interaction between light and matter is vitally important for a wide range of applications, such as the modelling of chemical processes in the Earth's atmosphere, research into combustion processes and the measurement and modelling of processes in astrophysics. Under the influence of light, molecules can vibrate, rotate, disintegrate or even be formed out of individual atoms. These processes take place according to the laws of quantum mechanics. Although the basic equations are known, solving them is a considerable technical problem. Thanks to Van der Loo's research, such solutions are a step closer.

Hydroxyl radical
The hydroxyl radical (OH) is highly reactive and plays an important role during combustion processes and chemical processes in the Earth's atmosphere. Van der Loo carried out calculations on OH, which examined the light absorption followed by decay and/or disassociation of the molecule. The lifespan of OH in atmospheric molecules is now no longer an uncertain factor.
Hydrogen molecules
Hydrogen molecules (H2) played an important role during the formation of the very first stars. The researcher investigated the contribution of the Raman association process to the formation of H2. In this process, individual colliding hydrogen atoms form hydrogen molecules under the influence of cosmic background radiation. Van der Loo was the first to completely describe this process from a quantum mechanics viewpoint and to accurately calculate it. His conclusion is that the process made an important contribution to the universe when it was about 10,000 years old, whereas the total contribution up until about 100 million years after the Big Bang is small.
Nitrous oxide
Nitrous oxide (N2O), laughing gas, is one of the greenhouse gases in the Earth's atmosphere. It can decompose in the atmosphere (photodissociation), into N2 and O, under the influence of sunlight. In the laboratory, photodissociation experiments can be performed to investigate the interaction between N2 and O at a fundamental level. Recently, a relatively simple mathematical model was used to interpret such an experiment on N2O. This model is based on the known N2O interaction at large distances between the fragments. In his PhD thesis, Van de Loo examines whether the assumptions underlying this model are valid and he draws the provisional conclusion that this is only partly justified.

Van der Loo's doctoral research was funded by the NWO programme Jonge Chemici (Young Chemists).

David Redeker | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_7EGBLB_Eng

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>