Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hs and OHs in the spotlight

23.05.2008
Dutch researcher Mark van der Loo has investigated the influence of light on the behaviour of small molecules and has calculated the effect of light for several types of molecules.

His theoretical research into light-induced processes in the hydroxyl radical (OH), the hydrogen molecule (H2) and nitrous oxide (N2O) has directly contributed to a better understanding of chemical processes taking place on Earth as well as in the universe.

The interaction between light and matter is vitally important for a wide range of applications, such as the modelling of chemical processes in the Earth's atmosphere, research into combustion processes and the measurement and modelling of processes in astrophysics. Under the influence of light, molecules can vibrate, rotate, disintegrate or even be formed out of individual atoms. These processes take place according to the laws of quantum mechanics. Although the basic equations are known, solving them is a considerable technical problem. Thanks to Van der Loo's research, such solutions are a step closer.

Hydroxyl radical
The hydroxyl radical (OH) is highly reactive and plays an important role during combustion processes and chemical processes in the Earth's atmosphere. Van der Loo carried out calculations on OH, which examined the light absorption followed by decay and/or disassociation of the molecule. The lifespan of OH in atmospheric molecules is now no longer an uncertain factor.
Hydrogen molecules
Hydrogen molecules (H2) played an important role during the formation of the very first stars. The researcher investigated the contribution of the Raman association process to the formation of H2. In this process, individual colliding hydrogen atoms form hydrogen molecules under the influence of cosmic background radiation. Van der Loo was the first to completely describe this process from a quantum mechanics viewpoint and to accurately calculate it. His conclusion is that the process made an important contribution to the universe when it was about 10,000 years old, whereas the total contribution up until about 100 million years after the Big Bang is small.
Nitrous oxide
Nitrous oxide (N2O), laughing gas, is one of the greenhouse gases in the Earth's atmosphere. It can decompose in the atmosphere (photodissociation), into N2 and O, under the influence of sunlight. In the laboratory, photodissociation experiments can be performed to investigate the interaction between N2 and O at a fundamental level. Recently, a relatively simple mathematical model was used to interpret such an experiment on N2O. This model is based on the known N2O interaction at large distances between the fragments. In his PhD thesis, Van de Loo examines whether the assumptions underlying this model are valid and he draws the provisional conclusion that this is only partly justified.

Van der Loo's doctoral research was funded by the NWO programme Jonge Chemici (Young Chemists).

David Redeker | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOA_7EGBLB_Eng

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>