Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hs and OHs in the spotlight

Dutch researcher Mark van der Loo has investigated the influence of light on the behaviour of small molecules and has calculated the effect of light for several types of molecules.

His theoretical research into light-induced processes in the hydroxyl radical (OH), the hydrogen molecule (H2) and nitrous oxide (N2O) has directly contributed to a better understanding of chemical processes taking place on Earth as well as in the universe.

The interaction between light and matter is vitally important for a wide range of applications, such as the modelling of chemical processes in the Earth's atmosphere, research into combustion processes and the measurement and modelling of processes in astrophysics. Under the influence of light, molecules can vibrate, rotate, disintegrate or even be formed out of individual atoms. These processes take place according to the laws of quantum mechanics. Although the basic equations are known, solving them is a considerable technical problem. Thanks to Van der Loo's research, such solutions are a step closer.

Hydroxyl radical
The hydroxyl radical (OH) is highly reactive and plays an important role during combustion processes and chemical processes in the Earth's atmosphere. Van der Loo carried out calculations on OH, which examined the light absorption followed by decay and/or disassociation of the molecule. The lifespan of OH in atmospheric molecules is now no longer an uncertain factor.
Hydrogen molecules
Hydrogen molecules (H2) played an important role during the formation of the very first stars. The researcher investigated the contribution of the Raman association process to the formation of H2. In this process, individual colliding hydrogen atoms form hydrogen molecules under the influence of cosmic background radiation. Van der Loo was the first to completely describe this process from a quantum mechanics viewpoint and to accurately calculate it. His conclusion is that the process made an important contribution to the universe when it was about 10,000 years old, whereas the total contribution up until about 100 million years after the Big Bang is small.
Nitrous oxide
Nitrous oxide (N2O), laughing gas, is one of the greenhouse gases in the Earth's atmosphere. It can decompose in the atmosphere (photodissociation), into N2 and O, under the influence of sunlight. In the laboratory, photodissociation experiments can be performed to investigate the interaction between N2 and O at a fundamental level. Recently, a relatively simple mathematical model was used to interpret such an experiment on N2O. This model is based on the known N2O interaction at large distances between the fragments. In his PhD thesis, Van de Loo examines whether the assumptions underlying this model are valid and he draws the provisional conclusion that this is only partly justified.

Van der Loo's doctoral research was funded by the NWO programme Jonge Chemici (Young Chemists).

David Redeker | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>