Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic supermagnet spreads mysterious Morse code

23.05.2008
Astronomers from SRON Netherlands Institute for Space Research have discovered mysterious pulses that are being emitted by an extremely magnetic star. The magnetic star, a magnetar, emits the pulses as very high energy X-rays. The astronomers made their observations using the ESA space telescopes INTEGRAL and XMM-Newton and the NASA satellite RXTE.

Sometimes observations confirm a scientific theory perfectly, yet at other times telescopes bring completely new phenomena to light. That is what happened in the case of SRON astronomer Peter den Hartog.

‘I was looking for new sources of high energy X-rays on a celestial chart, made using the space telescope INTEGRAL. To our surprise, at the edge of this chart a star was visible that we knew was a magnetar. However, we never expected that it would emit this type of radiation,' says the researcher, who upon making this discovery immediately requested additional observation time with INTEGRAL for follow-up research.

Magnetars are small compact neutron stars with a magnetic field that is one billion times stronger than what can be artificially made on Earth. They are the strongest magnets in the universe. They have a mass one-and-a-half times that of the Sun but this is squeezed into a sphere with a radius of 10 kilometres. How they form exactly is a mystery. As they emit enormous quantities of energy in the form of X-rays, they have a lifespan of only 10,000 years. The magnetars rotate like mad around their axes, as a result of which they regularly sling a bundle of radiation into space like a lighthouse emitting a beacon of light. Although these X-rays to not reach the Earth's surface, they are nevertheless visible in space with the aid of an X-ray telescope.

For a long time astronomers thought that they had understood the nature of magnetars. The internal energy of a magnetar, stored in the extreme internal magnetic field that spirals through the star, was emitted as relatively low energy X-rays. However, that image was overturned several years ago by SRON astronomer Lucien Kuiper, when he used observations from INTEGRAL to demonstrate that the magnetars emit far more radiation of a far higher energy level. The phenomenon of the magnetars was once again shrouded in mystery. And Peter den Hartog's research has only added to this by revealing even more striking properties.

‘By converting the observations from INTEGRAL, XMM-Newton and RXTE into a type of short film, we could see how the characteristics of the X-rays changed over the course of time,’ explains Den Hartog. The characteristics of the radiation were found to drastically change during the rotation of the magnetar. Den Hartog: ‘Three different processes were found to be taking place in the magnetar that gave rise to three different pulses’. For the time being, the meaning of this Morse code remains a mystery. This is why astronomers look with high expectations forward to the first data of space observatory GLAST due for launch by NASA on the 2nd of June. GLAST will study the high energy radiation from the universe in detail.

SRON is strongly involved in both INTEGRAL and XMM-Newton. SRON astronomer Wim Hermsen is a mission scientist in the INTEGRAL team and as such is closely involved in the satellite's scientific programme. SRON has also built an instrument for XMM-Newton that unravels the X-rays picked up by the telescope and then analyses these in detail.

Peter den Hartog defended his PhD thesis entitled ‘Non-thermal X-ray emission from Anomalous X-ray Pulsars’ on Wednesday 21 May 2008 at the Universiteit van Amsterdam.

Jasper Wamsteker | alfa
Further information:
http://www.sron.nl/index.php?option=com_content&task=view&id=1833&Itemid=588

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>