Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic supermagnet spreads mysterious Morse code

23.05.2008
Astronomers from SRON Netherlands Institute for Space Research have discovered mysterious pulses that are being emitted by an extremely magnetic star. The magnetic star, a magnetar, emits the pulses as very high energy X-rays. The astronomers made their observations using the ESA space telescopes INTEGRAL and XMM-Newton and the NASA satellite RXTE.

Sometimes observations confirm a scientific theory perfectly, yet at other times telescopes bring completely new phenomena to light. That is what happened in the case of SRON astronomer Peter den Hartog.

‘I was looking for new sources of high energy X-rays on a celestial chart, made using the space telescope INTEGRAL. To our surprise, at the edge of this chart a star was visible that we knew was a magnetar. However, we never expected that it would emit this type of radiation,' says the researcher, who upon making this discovery immediately requested additional observation time with INTEGRAL for follow-up research.

Magnetars are small compact neutron stars with a magnetic field that is one billion times stronger than what can be artificially made on Earth. They are the strongest magnets in the universe. They have a mass one-and-a-half times that of the Sun but this is squeezed into a sphere with a radius of 10 kilometres. How they form exactly is a mystery. As they emit enormous quantities of energy in the form of X-rays, they have a lifespan of only 10,000 years. The magnetars rotate like mad around their axes, as a result of which they regularly sling a bundle of radiation into space like a lighthouse emitting a beacon of light. Although these X-rays to not reach the Earth's surface, they are nevertheless visible in space with the aid of an X-ray telescope.

For a long time astronomers thought that they had understood the nature of magnetars. The internal energy of a magnetar, stored in the extreme internal magnetic field that spirals through the star, was emitted as relatively low energy X-rays. However, that image was overturned several years ago by SRON astronomer Lucien Kuiper, when he used observations from INTEGRAL to demonstrate that the magnetars emit far more radiation of a far higher energy level. The phenomenon of the magnetars was once again shrouded in mystery. And Peter den Hartog's research has only added to this by revealing even more striking properties.

‘By converting the observations from INTEGRAL, XMM-Newton and RXTE into a type of short film, we could see how the characteristics of the X-rays changed over the course of time,’ explains Den Hartog. The characteristics of the radiation were found to drastically change during the rotation of the magnetar. Den Hartog: ‘Three different processes were found to be taking place in the magnetar that gave rise to three different pulses’. For the time being, the meaning of this Morse code remains a mystery. This is why astronomers look with high expectations forward to the first data of space observatory GLAST due for launch by NASA on the 2nd of June. GLAST will study the high energy radiation from the universe in detail.

SRON is strongly involved in both INTEGRAL and XMM-Newton. SRON astronomer Wim Hermsen is a mission scientist in the INTEGRAL team and as such is closely involved in the satellite's scientific programme. SRON has also built an instrument for XMM-Newton that unravels the X-rays picked up by the telescope and then analyses these in detail.

Peter den Hartog defended his PhD thesis entitled ‘Non-thermal X-ray emission from Anomalous X-ray Pulsars’ on Wednesday 21 May 2008 at the Universiteit van Amsterdam.

Jasper Wamsteker | alfa
Further information:
http://www.sron.nl/index.php?option=com_content&task=view&id=1833&Itemid=588

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>