Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic supermagnet spreads mysterious Morse code

23.05.2008
Astronomers from SRON Netherlands Institute for Space Research have discovered mysterious pulses that are being emitted by an extremely magnetic star. The magnetic star, a magnetar, emits the pulses as very high energy X-rays. The astronomers made their observations using the ESA space telescopes INTEGRAL and XMM-Newton and the NASA satellite RXTE.

Sometimes observations confirm a scientific theory perfectly, yet at other times telescopes bring completely new phenomena to light. That is what happened in the case of SRON astronomer Peter den Hartog.

‘I was looking for new sources of high energy X-rays on a celestial chart, made using the space telescope INTEGRAL. To our surprise, at the edge of this chart a star was visible that we knew was a magnetar. However, we never expected that it would emit this type of radiation,' says the researcher, who upon making this discovery immediately requested additional observation time with INTEGRAL for follow-up research.

Magnetars are small compact neutron stars with a magnetic field that is one billion times stronger than what can be artificially made on Earth. They are the strongest magnets in the universe. They have a mass one-and-a-half times that of the Sun but this is squeezed into a sphere with a radius of 10 kilometres. How they form exactly is a mystery. As they emit enormous quantities of energy in the form of X-rays, they have a lifespan of only 10,000 years. The magnetars rotate like mad around their axes, as a result of which they regularly sling a bundle of radiation into space like a lighthouse emitting a beacon of light. Although these X-rays to not reach the Earth's surface, they are nevertheless visible in space with the aid of an X-ray telescope.

For a long time astronomers thought that they had understood the nature of magnetars. The internal energy of a magnetar, stored in the extreme internal magnetic field that spirals through the star, was emitted as relatively low energy X-rays. However, that image was overturned several years ago by SRON astronomer Lucien Kuiper, when he used observations from INTEGRAL to demonstrate that the magnetars emit far more radiation of a far higher energy level. The phenomenon of the magnetars was once again shrouded in mystery. And Peter den Hartog's research has only added to this by revealing even more striking properties.

‘By converting the observations from INTEGRAL, XMM-Newton and RXTE into a type of short film, we could see how the characteristics of the X-rays changed over the course of time,’ explains Den Hartog. The characteristics of the radiation were found to drastically change during the rotation of the magnetar. Den Hartog: ‘Three different processes were found to be taking place in the magnetar that gave rise to three different pulses’. For the time being, the meaning of this Morse code remains a mystery. This is why astronomers look with high expectations forward to the first data of space observatory GLAST due for launch by NASA on the 2nd of June. GLAST will study the high energy radiation from the universe in detail.

SRON is strongly involved in both INTEGRAL and XMM-Newton. SRON astronomer Wim Hermsen is a mission scientist in the INTEGRAL team and as such is closely involved in the satellite's scientific programme. SRON has also built an instrument for XMM-Newton that unravels the X-rays picked up by the telescope and then analyses these in detail.

Peter den Hartog defended his PhD thesis entitled ‘Non-thermal X-ray emission from Anomalous X-ray Pulsars’ on Wednesday 21 May 2008 at the Universiteit van Amsterdam.

Jasper Wamsteker | alfa
Further information:
http://www.sron.nl/index.php?option=com_content&task=view&id=1833&Itemid=588

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>