Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic supermagnet spreads mysterious Morse code

23.05.2008
Astronomers from SRON Netherlands Institute for Space Research have discovered mysterious pulses that are being emitted by an extremely magnetic star. The magnetic star, a magnetar, emits the pulses as very high energy X-rays. The astronomers made their observations using the ESA space telescopes INTEGRAL and XMM-Newton and the NASA satellite RXTE.

Sometimes observations confirm a scientific theory perfectly, yet at other times telescopes bring completely new phenomena to light. That is what happened in the case of SRON astronomer Peter den Hartog.

‘I was looking for new sources of high energy X-rays on a celestial chart, made using the space telescope INTEGRAL. To our surprise, at the edge of this chart a star was visible that we knew was a magnetar. However, we never expected that it would emit this type of radiation,' says the researcher, who upon making this discovery immediately requested additional observation time with INTEGRAL for follow-up research.

Magnetars are small compact neutron stars with a magnetic field that is one billion times stronger than what can be artificially made on Earth. They are the strongest magnets in the universe. They have a mass one-and-a-half times that of the Sun but this is squeezed into a sphere with a radius of 10 kilometres. How they form exactly is a mystery. As they emit enormous quantities of energy in the form of X-rays, they have a lifespan of only 10,000 years. The magnetars rotate like mad around their axes, as a result of which they regularly sling a bundle of radiation into space like a lighthouse emitting a beacon of light. Although these X-rays to not reach the Earth's surface, they are nevertheless visible in space with the aid of an X-ray telescope.

For a long time astronomers thought that they had understood the nature of magnetars. The internal energy of a magnetar, stored in the extreme internal magnetic field that spirals through the star, was emitted as relatively low energy X-rays. However, that image was overturned several years ago by SRON astronomer Lucien Kuiper, when he used observations from INTEGRAL to demonstrate that the magnetars emit far more radiation of a far higher energy level. The phenomenon of the magnetars was once again shrouded in mystery. And Peter den Hartog's research has only added to this by revealing even more striking properties.

‘By converting the observations from INTEGRAL, XMM-Newton and RXTE into a type of short film, we could see how the characteristics of the X-rays changed over the course of time,’ explains Den Hartog. The characteristics of the radiation were found to drastically change during the rotation of the magnetar. Den Hartog: ‘Three different processes were found to be taking place in the magnetar that gave rise to three different pulses’. For the time being, the meaning of this Morse code remains a mystery. This is why astronomers look with high expectations forward to the first data of space observatory GLAST due for launch by NASA on the 2nd of June. GLAST will study the high energy radiation from the universe in detail.

SRON is strongly involved in both INTEGRAL and XMM-Newton. SRON astronomer Wim Hermsen is a mission scientist in the INTEGRAL team and as such is closely involved in the satellite's scientific programme. SRON has also built an instrument for XMM-Newton that unravels the X-rays picked up by the telescope and then analyses these in detail.

Peter den Hartog defended his PhD thesis entitled ‘Non-thermal X-ray emission from Anomalous X-ray Pulsars’ on Wednesday 21 May 2008 at the Universiteit van Amsterdam.

Jasper Wamsteker | alfa
Further information:
http://www.sron.nl/index.php?option=com_content&task=view&id=1833&Itemid=588

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>