Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A scientific first: A Supernova Explosion is Observed in Real Time

23.05.2008
As members of a team analyzing data from the first real-time observation of a supernova explosion, Weizmann Institute scientists are finding confirmation for their model of the process and helping to solve unanswered questions.

An ordinary observation with NASA's Swift research satellite recently led to the first real-time sighting of a star in the process of exploding. Astronomers have surveyed thousands of these supernova explosions in the past, but their observations have always begun some time after the main event is underway. The information gained from catching a supernova at the very onset is already being hailed as the 'Rosetta Stone' of star explosion, and it is helping scientists to form a detailed picture of the processes involved.

A typical supernova is preceded by the burn-out of a massive star. When the nuclear fuel at its core runs out, the star collapses under its own weight. The resulting body, now known as a neutron star, is so dense that one teaspoonful of its core material weighs as much as all the humans on earth. This extreme compression is followed by a rebound, creating a shock wave that bounces off the surface of the newly-formed neutron star and rips through its outer, gaseous layers. These layers are ejected, flying off the surface in rapidly expanding shells.

For the last four decades, astronomers have theorized that the explosion is preceded by a burst of x-ray radiation that lasts for several minutes. For the first time, that burst was actually seen - all previous observations had taken place when the star was already an expanding shell of debris, days or even weeks after the explosions' start. Both luck and the Swift satellite's unique design played a role in the discovery. In January of this year, Drs. Alicia Soderberg and Edo Berger of Princeton University, USA, were using the satellite, which measures gamma rays, X rays and ultraviolet light, to observe another supernova in a spiral galaxy in the Lynx constellation, 90 million light-years from Earth. At 9:33 EST, they spotted an extremely bright five-minute X-ray burst and realized it was coming from another location within the same galaxy.

The Princeton scientists immediately assembled a team of 15 research groups around the world to investigate, including Prof. Eli Waxman and Dr. Avishay Gal-Yam of the Weizmann Institute's Physics Faculty. Gal-Yam performed measurements and calculations that enabled the scientific team to cancel out the various disturbances that affect astronomical data, such as radiation-absorbing interstellar dust, which skews observed measurements. The shock-wave eruption and X-ray generation of this supernova explosion went exactly according to the theoretical model that Waxman and Prof. Peter Meszaros of Penn State University had developed earlier. The data showed that the explosion - known as supernova 2008D - is a relatively common type of supernova, and not a rare supernova involving jets of gamma ray radiation.

Already, the observation has provided scientists with valuable new information on supernovae, including the dimensions of the exploding star, the structure of its envelope and the properties of the shock wave that hurls off the star's outer envelope. As they continue to analyze the data, the scientists believe it may help them to solve some of the outstanding puzzles surrounding these types of explosion. For instance, according to mathematical calculations of the forces involved in neutron star collapse, the bouncing shock wave should stall out before it manages to eject the stellar envelope. Clearly, this is not what happens in nature, but clues found in the Swift observations may help researchers to correct the model.

Now that they have observed a supernova from the pre-explosion stage, the scientists are not only gaining a better understanding of the little-understood processes that make these stars explode; they hope their knowledge of the x-ray emissions will enable them to catch more stars that are right on the brink of becoming supernovae.

Prof. Eli Waxman is Head of the Benoziyo Center for Astrophysics and the Albert Einstein Minerva Center for Theoretical Physics.

Dr. Avishai Gal-Yam's research is supported by the Nella and Leon Benoziyo Center for Astrophysics and the William Z. and Eda Bess Novick Young Scientist Fund.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at
http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Batya Greenman | idw
Further information:
http://www.weizmann.ac.il/
http://wis-wander.weizmann.ac.il/site/en/weizman.asp?pi=371&doc_id=5126

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>