Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A scientific first: A Supernova Explosion is Observed in Real Time

As members of a team analyzing data from the first real-time observation of a supernova explosion, Weizmann Institute scientists are finding confirmation for their model of the process and helping to solve unanswered questions.

An ordinary observation with NASA's Swift research satellite recently led to the first real-time sighting of a star in the process of exploding. Astronomers have surveyed thousands of these supernova explosions in the past, but their observations have always begun some time after the main event is underway. The information gained from catching a supernova at the very onset is already being hailed as the 'Rosetta Stone' of star explosion, and it is helping scientists to form a detailed picture of the processes involved.

A typical supernova is preceded by the burn-out of a massive star. When the nuclear fuel at its core runs out, the star collapses under its own weight. The resulting body, now known as a neutron star, is so dense that one teaspoonful of its core material weighs as much as all the humans on earth. This extreme compression is followed by a rebound, creating a shock wave that bounces off the surface of the newly-formed neutron star and rips through its outer, gaseous layers. These layers are ejected, flying off the surface in rapidly expanding shells.

For the last four decades, astronomers have theorized that the explosion is preceded by a burst of x-ray radiation that lasts for several minutes. For the first time, that burst was actually seen - all previous observations had taken place when the star was already an expanding shell of debris, days or even weeks after the explosions' start. Both luck and the Swift satellite's unique design played a role in the discovery. In January of this year, Drs. Alicia Soderberg and Edo Berger of Princeton University, USA, were using the satellite, which measures gamma rays, X rays and ultraviolet light, to observe another supernova in a spiral galaxy in the Lynx constellation, 90 million light-years from Earth. At 9:33 EST, they spotted an extremely bright five-minute X-ray burst and realized it was coming from another location within the same galaxy.

The Princeton scientists immediately assembled a team of 15 research groups around the world to investigate, including Prof. Eli Waxman and Dr. Avishay Gal-Yam of the Weizmann Institute's Physics Faculty. Gal-Yam performed measurements and calculations that enabled the scientific team to cancel out the various disturbances that affect astronomical data, such as radiation-absorbing interstellar dust, which skews observed measurements. The shock-wave eruption and X-ray generation of this supernova explosion went exactly according to the theoretical model that Waxman and Prof. Peter Meszaros of Penn State University had developed earlier. The data showed that the explosion - known as supernova 2008D - is a relatively common type of supernova, and not a rare supernova involving jets of gamma ray radiation.

Already, the observation has provided scientists with valuable new information on supernovae, including the dimensions of the exploding star, the structure of its envelope and the properties of the shock wave that hurls off the star's outer envelope. As they continue to analyze the data, the scientists believe it may help them to solve some of the outstanding puzzles surrounding these types of explosion. For instance, according to mathematical calculations of the forces involved in neutron star collapse, the bouncing shock wave should stall out before it manages to eject the stellar envelope. Clearly, this is not what happens in nature, but clues found in the Swift observations may help researchers to correct the model.

Now that they have observed a supernova from the pre-explosion stage, the scientists are not only gaining a better understanding of the little-understood processes that make these stars explode; they hope their knowledge of the x-ray emissions will enable them to catch more stars that are right on the brink of becoming supernovae.

Prof. Eli Waxman is Head of the Benoziyo Center for Astrophysics and the Albert Einstein Minerva Center for Theoretical Physics.

Dr. Avishai Gal-Yam's research is supported by the Nella and Leon Benoziyo Center for Astrophysics and the William Z. and Eda Bess Novick Young Scientist Fund.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at, and are also available at

Batya Greenman | idw
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>