Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A scientific first: A Supernova Explosion is Observed in Real Time

23.05.2008
As members of a team analyzing data from the first real-time observation of a supernova explosion, Weizmann Institute scientists are finding confirmation for their model of the process and helping to solve unanswered questions.

An ordinary observation with NASA's Swift research satellite recently led to the first real-time sighting of a star in the process of exploding. Astronomers have surveyed thousands of these supernova explosions in the past, but their observations have always begun some time after the main event is underway. The information gained from catching a supernova at the very onset is already being hailed as the 'Rosetta Stone' of star explosion, and it is helping scientists to form a detailed picture of the processes involved.

A typical supernova is preceded by the burn-out of a massive star. When the nuclear fuel at its core runs out, the star collapses under its own weight. The resulting body, now known as a neutron star, is so dense that one teaspoonful of its core material weighs as much as all the humans on earth. This extreme compression is followed by a rebound, creating a shock wave that bounces off the surface of the newly-formed neutron star and rips through its outer, gaseous layers. These layers are ejected, flying off the surface in rapidly expanding shells.

For the last four decades, astronomers have theorized that the explosion is preceded by a burst of x-ray radiation that lasts for several minutes. For the first time, that burst was actually seen - all previous observations had taken place when the star was already an expanding shell of debris, days or even weeks after the explosions' start. Both luck and the Swift satellite's unique design played a role in the discovery. In January of this year, Drs. Alicia Soderberg and Edo Berger of Princeton University, USA, were using the satellite, which measures gamma rays, X rays and ultraviolet light, to observe another supernova in a spiral galaxy in the Lynx constellation, 90 million light-years from Earth. At 9:33 EST, they spotted an extremely bright five-minute X-ray burst and realized it was coming from another location within the same galaxy.

The Princeton scientists immediately assembled a team of 15 research groups around the world to investigate, including Prof. Eli Waxman and Dr. Avishay Gal-Yam of the Weizmann Institute's Physics Faculty. Gal-Yam performed measurements and calculations that enabled the scientific team to cancel out the various disturbances that affect astronomical data, such as radiation-absorbing interstellar dust, which skews observed measurements. The shock-wave eruption and X-ray generation of this supernova explosion went exactly according to the theoretical model that Waxman and Prof. Peter Meszaros of Penn State University had developed earlier. The data showed that the explosion - known as supernova 2008D - is a relatively common type of supernova, and not a rare supernova involving jets of gamma ray radiation.

Already, the observation has provided scientists with valuable new information on supernovae, including the dimensions of the exploding star, the structure of its envelope and the properties of the shock wave that hurls off the star's outer envelope. As they continue to analyze the data, the scientists believe it may help them to solve some of the outstanding puzzles surrounding these types of explosion. For instance, according to mathematical calculations of the forces involved in neutron star collapse, the bouncing shock wave should stall out before it manages to eject the stellar envelope. Clearly, this is not what happens in nature, but clues found in the Swift observations may help researchers to correct the model.

Now that they have observed a supernova from the pre-explosion stage, the scientists are not only gaining a better understanding of the little-understood processes that make these stars explode; they hope their knowledge of the x-ray emissions will enable them to catch more stars that are right on the brink of becoming supernovae.

Prof. Eli Waxman is Head of the Benoziyo Center for Astrophysics and the Albert Einstein Minerva Center for Theoretical Physics.

Dr. Avishai Gal-Yam's research is supported by the Nella and Leon Benoziyo Center for Astrophysics and the William Z. and Eda Bess Novick Young Scientist Fund.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at
http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Batya Greenman | idw
Further information:
http://www.weizmann.ac.il/
http://wis-wander.weizmann.ac.il/site/en/weizman.asp?pi=371&doc_id=5126

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>