Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Demonstrate Precise Manipulation of DNA-Drug Interactions

21.05.2008
Mark Williams, Ph.D., Associate Professor of Physics at Northeastern University’s College of Arts in Sciences, and his research team have developed a method using optical tweezers to better understand how those interactions occur.

Being able to target the genetic code to develop an effective treatment of a disease is the ultimate goal for many scientists. Focusing on how the DNA interacts with a potential drug is an important element of DNA therapy research. Mark Williams, Ph.D., Associate Professor of Physics at Northeastern University’s College of Arts and Sciences, and his research team have developed a method using optical tweezers to better understand how those interactions occur.

This research, performed primarily by graduate student Thaya Paramanathan, published in a recent edition of the Journal of the American Chemical Society (vol. 130, p. 3752), has the potential to uncover crucial information about how to target DNA in order to develop therapies for chronic diseases such as cancer and AIDS.

DNA, the structure that holds the human genetic code, is composed of nucleic acid bases pairing up and bonding together to form a double helix. Intercalators are molecules that bind between DNA base pairs and have been found to inhibit cell replication, a highly desired quality for potential drug targets. Novel “threading” intercalators have recently been developed to optimize DNA binding. Due to the strength of these bonds and the slow rate of binding, however, it is hard to study the interactions of these intercalators using normal methods, resulting in a limited availability of data and research options.

To address these issues, Mark Williams and his team stretched single DNA molecules using optical tweezers to better control the interactions between the DNA and the potential drug target molecules.

“By studying this threading mechanism on a single DNA molecule, we were able to directly measure the physical characteristics of the interactions between the DNA and potential DNA binding drugs,” said Williams.

The optical tweezers grab the ends of the DNA strand and stretch it out, allowing for the DNA strands to separate more quickly. When the DNA bases separate, the drug molecule, which is dumbbell-shaped and binds with the DNA in the center of the dumb-bell, slides in between the base pairs. When the bond re-forms between the base pairs, the potential drug molecule remains stuck between the DNA strands that form the double helix, and therefore it has formed a very strong bond.

The observations lead to the understanding of how and under what circumstances these bonds occur, which can help in the development of drug therapies that would inhibit or prevent mutated cells from replicating.

“The ability to precisely quantify and characterize the physical mechanism of this threading intercalation should help to fine-tune the desired DNA binding properties,” added Williams.

About Northeastern

Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university’s distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions.

Jenny Eriksen | newswise
Further information:
http://nuweb.neu.edu/mark/
http://www.northeastern.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>