Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists Demonstrate Precise Manipulation of DNA-Drug Interactions

Mark Williams, Ph.D., Associate Professor of Physics at Northeastern University’s College of Arts in Sciences, and his research team have developed a method using optical tweezers to better understand how those interactions occur.

Being able to target the genetic code to develop an effective treatment of a disease is the ultimate goal for many scientists. Focusing on how the DNA interacts with a potential drug is an important element of DNA therapy research. Mark Williams, Ph.D., Associate Professor of Physics at Northeastern University’s College of Arts and Sciences, and his research team have developed a method using optical tweezers to better understand how those interactions occur.

This research, performed primarily by graduate student Thaya Paramanathan, published in a recent edition of the Journal of the American Chemical Society (vol. 130, p. 3752), has the potential to uncover crucial information about how to target DNA in order to develop therapies for chronic diseases such as cancer and AIDS.

DNA, the structure that holds the human genetic code, is composed of nucleic acid bases pairing up and bonding together to form a double helix. Intercalators are molecules that bind between DNA base pairs and have been found to inhibit cell replication, a highly desired quality for potential drug targets. Novel “threading” intercalators have recently been developed to optimize DNA binding. Due to the strength of these bonds and the slow rate of binding, however, it is hard to study the interactions of these intercalators using normal methods, resulting in a limited availability of data and research options.

To address these issues, Mark Williams and his team stretched single DNA molecules using optical tweezers to better control the interactions between the DNA and the potential drug target molecules.

“By studying this threading mechanism on a single DNA molecule, we were able to directly measure the physical characteristics of the interactions between the DNA and potential DNA binding drugs,” said Williams.

The optical tweezers grab the ends of the DNA strand and stretch it out, allowing for the DNA strands to separate more quickly. When the DNA bases separate, the drug molecule, which is dumbbell-shaped and binds with the DNA in the center of the dumb-bell, slides in between the base pairs. When the bond re-forms between the base pairs, the potential drug molecule remains stuck between the DNA strands that form the double helix, and therefore it has formed a very strong bond.

The observations lead to the understanding of how and under what circumstances these bonds occur, which can help in the development of drug therapies that would inhibit or prevent mutated cells from replicating.

“The ability to precisely quantify and characterize the physical mechanism of this threading intercalation should help to fine-tune the desired DNA binding properties,” added Williams.

About Northeastern

Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university’s distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions.

Jenny Eriksen | newswise
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>