Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Explores Physics of Wrinkling, Folding

19.05.2008
Scientists at the University of Chicago and the University of Santiago in Chile have explained, for the first time, the physics that governs how thin materials at scales millions of times different in thickness make the transition from wrinkles into folds under compression.

Scientists at the University of Chicago and the University of Santiago in Chile have explained, for the first time, the physics that governs how thin materials at scales millions of times different in thickness make the transition from wrinkles into folds under compression.

The study stems from a research program at the University of Chicago aimed at understanding the characteristics of lung surfactant, a microscopically thin membrane that facilitates breathing. But the findings would apply both to the design of foldable electronics and to the production of synthetic lung surfactant for therapeutic uses.

“Our paper is getting at the generality of these types of transitions,” said Luka Pocivavsek, an M.D./Ph.D. student at the University of Chicago. Lung surfactant has the ability to wrinkle and fold under pressure, then gracefully pop back into a stiff configuration when relaxed. “It’s not necessarily something special about lung surfactant that lets it do this. It’s really the fact that lung surfactant behaves like an elastic, thin sheet,” Pocivavsek said.

He and his co-authors will publish their results in the May 16 issue of the journal Science. His co-authors include Ka Yee Lee, Associate Professor in Chemistry, and Binhua Lin, Senior Research Associate in the Center for Advanced Radiation Sources (CARS), both at the University of Chicago; and Enrique Cerda, Associate Professor of Physics at the University of Santiago. Also contributing to the study were two summer researchers: Sebastián Johnson, an undergraduate exchange student from the University of Santiago; Andrew Kern, a 2007 graduate of the University of Chicago Laboratory Schools, now at Northwestern University; and Robert Dellsey of Tulane University.

Lee’s laboratory typically works with materials that resemble lung surfactant, which measures only 2 nanometers in thickness (the width of several atoms). “When we breathe, lung surfactant is compressed in the air sacs during exhalation,” Pocivavsek said. “It’s compressed so far that eventually it has to transition from being just a flat surface to something that’s now crumpled.”

The chief component of lung surfactant is called dipalmitoylphosphatidylcholine (DPPC). Pocivavsek likened DPPC in its purest form to a porcelain plate. “If you push on it hard enough, it’s going to crack,” he said. If lung surfactant consisted of 100 percent DPPC, the cracked pieces would hold together under the pressure during exhalation. But the plate would fall apart upon inhalation, which would decrease the stress.

Scientists can alter the properties of their experimental surfactants by mixing another type of lipid (fat) with the DPPC. The “magic lung-surfactant-lipid composition” is approximately 70 percent of the electrically neutral DPPC and 30 percent of a charged lipid, Lee said.

“It’s a tricky thing,” she said, balancing the stiffness of DPPC with the fluid behavior of the other lipid component. “In natural lung surfactant, various lung surfactant proteins are involved as well.”

Lee and Pocivavsek have attempted to clarify what causes the wrinkle-to-fold transition in experimental lung surfactant under stress, but with inconclusive results. “It’s just a difficult experiment because the lipid film is so thin and other competing effects prevent us from unequivocally observing the transition,” Lee said.

But thanks to the Chicago-Chile Inter-American Materials Collaboration, funded by the National Science Foundation, Pocivavsek began a new line of related experiments on wrinkling and folding in a much thicker polyester film to get insights into the wrinkling-to-folding transition. At 10 microns thickness—narrower than a hair—the polyester film is thick enough to see with the naked eye.

Pocivavsek spent three months at the University of Santiago in 2006 with the theoretical collaborator of the project, Enrique Cerda, returning for another month last December. In Santiago, Luka started exploring the response of polyester films when put under stress. “They do some really amazing science,” Pocivavsek said of Cerda and his associates.

Pocivavsek continued the experiment in Lee’s laboratory upon his return from Santiago. Along with summer students Sebastián Johnson and Andrew Kern, he was able to precisely measure the wrinkles and folds in the polyester film. Binhua Lin at CARS, meanwhile, used light microscopy and X-ray techniques to measure wrinkling and folding in three layers of gold nanoparticles measuring only 15 nanometers in thickness. Working with Pocivavsek and Dellsy, her experiments provided data on a third type of material at yet another length scale. The collaboration was further enhanced by Cerda’s visit to Chicago last summer.

These findings enabled the group to verify Cerda’s theoretical calculations about how lung surfactant behaves, and document the universal dynamics of wrinkling and folding over a vast range of length scales in different materials.

When first compressed, an elastic material begins to wrinkle. The stress then focuses at a certain point, causing a trough or a peak to grow. Lung surfactant has the ability to reverse this stress focusing, allowing the folding that occurs on exhalation to smoothly stretch back into its previous state with inhalation.

A crumpled piece of paper shows ridges when flattened out again because there is nowhere for the focused energy to escape. Not so with a membrane stretched over a reservoir, where fluid will absorb the energy, preventing ridge formation. The principle has technological as well as biomedical implications.

“What if we want to have electronic paper?” Lee asked. “Make a polymer composite that would never wrinkle.”

And in the biomedical arena, researchers may be able to develop a therapy for sufferers of Respiratory Distress Syndrome that mimics the physical properties, rather than the chemical composition of natural lung surfactant. “We might not necessarily have to use the particular lung surfactant components that nature uses,” Pocivavsek said.

In addition to the NSF, support for Lee and Pocivavsek’s research comes from the U.S.-Israel Binational Foundation, the University of Chicago’s Medical Scientist Training Program, the Dreyfus Foundation, the March of Dimes and the U.S. Department of Energy.

Steve Koppes | newswise
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>