Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Venus Express discovers hydroxyl in the atmosphere of Venus through its nightglow emission

16.05.2008
Astronomy & Astrophysics is publishing the first detection with the Venus Express spacecraft of hydroxyl (OH) in the atmosphere of Venus.

The OH “radical” is a very special and reactive molecule, which is unusual in conventional chemistry because of its reactivity. Using the VIRTIS instrument onboard Venus Express, an international team of astronomers [1] observed the light emission from the night side of Venus's atmosphere and detected the presence of the OH radical in the spectra. The Venus Express spacecraft has been orbiting Venus for more than two years and has already provided planetologists with a handful of new results [2].

Just like the Earth, the atmosphere of Venus emits a very weak light caused by various processes occurring in the upper atmosphere. On Earth, this weak emission of light, known as airglow, was discovered in 1868. It is also referred to as nightglow because it can only be seen during the night. In the daytime, it is hidden by the much stronger light because of sunlight scattering. Observing atmospheric airglow is a major tool for inferring the composition and chemistry of the upper atmospheres of planets. For example, in Earth's atmosphere, the airglow from the OH radical, which was detected in 1948, was later found to play an important role in purging the atmosphere of pollutants harmful to the biosphere. Theoretical studies show that the hydroxyl airglow also plays an important role in the chemistry of Mars' atmosphere, but it has not yet been detected.

On Venus, airglow emissions have already been observed coming from nitrogen monoxide (NO) and oxygen dioxide (O2). The VIRTIS team now reports measurements of four airglow emission lines: two from OH at 1.44 and 2.80 microns and two from O2 at 1.27 and 1.58 microns. Figure 1 illustrates these detections. Except for the O2 emission line at 1.27 micron, which has already been observed on Venus, all three of the other emission lines have never been observed before, neither on Venus nor on another planet besides Earth [3].

These new observations are the most direct information found yet of three key components of Venus's upper atmosphere: hydrogen, hydroxyl, ozone (O3), and possibly perhydroxyl (HO2).

[1] The team of astronomers includes G. Piccioni, A. Migliorini, V. Cottini (INAF-IASF, Roma, Italy), P. Drossart, S. Erard (LESIA, Observatoire de Paris, CNRS, France), L. Zasova, A. Shakun, N. Ignatiev (IKI, Russia), J-C Gérard (LPAP, Liège, Belgium), F.P. Mills, A. Garcia Munoz (Australian National Univ.), D. Grassi, (INAF-IFSI, Roma, Italy), F.W. Taylor (Oxford Univ., UK), and the VIRTIS-Venus Express Technical Team.

[2] Visit the Venus Express web site at http://www.esa.int/SPECIALS/Venus_Express/index.html

[3] While never detected before on another planet besides Earth, hydroxyl is frequently observed in the atmosphere of comets.

Jennifer Martin | alfa
Further information:
http://www.aanda.org/content/view/305/42/lang,en/

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

New printing technique uses cells and molecules to recreate biological structures

20.02.2018 | Life Sciences

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>