Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Venus Express discovers hydroxyl in the atmosphere of Venus through its nightglow emission

16.05.2008
Astronomy & Astrophysics is publishing the first detection with the Venus Express spacecraft of hydroxyl (OH) in the atmosphere of Venus.

The OH “radical” is a very special and reactive molecule, which is unusual in conventional chemistry because of its reactivity. Using the VIRTIS instrument onboard Venus Express, an international team of astronomers [1] observed the light emission from the night side of Venus's atmosphere and detected the presence of the OH radical in the spectra. The Venus Express spacecraft has been orbiting Venus for more than two years and has already provided planetologists with a handful of new results [2].

Just like the Earth, the atmosphere of Venus emits a very weak light caused by various processes occurring in the upper atmosphere. On Earth, this weak emission of light, known as airglow, was discovered in 1868. It is also referred to as nightglow because it can only be seen during the night. In the daytime, it is hidden by the much stronger light because of sunlight scattering. Observing atmospheric airglow is a major tool for inferring the composition and chemistry of the upper atmospheres of planets. For example, in Earth's atmosphere, the airglow from the OH radical, which was detected in 1948, was later found to play an important role in purging the atmosphere of pollutants harmful to the biosphere. Theoretical studies show that the hydroxyl airglow also plays an important role in the chemistry of Mars' atmosphere, but it has not yet been detected.

On Venus, airglow emissions have already been observed coming from nitrogen monoxide (NO) and oxygen dioxide (O2). The VIRTIS team now reports measurements of four airglow emission lines: two from OH at 1.44 and 2.80 microns and two from O2 at 1.27 and 1.58 microns. Figure 1 illustrates these detections. Except for the O2 emission line at 1.27 micron, which has already been observed on Venus, all three of the other emission lines have never been observed before, neither on Venus nor on another planet besides Earth [3].

These new observations are the most direct information found yet of three key components of Venus's upper atmosphere: hydrogen, hydroxyl, ozone (O3), and possibly perhydroxyl (HO2).

[1] The team of astronomers includes G. Piccioni, A. Migliorini, V. Cottini (INAF-IASF, Roma, Italy), P. Drossart, S. Erard (LESIA, Observatoire de Paris, CNRS, France), L. Zasova, A. Shakun, N. Ignatiev (IKI, Russia), J-C Gérard (LPAP, Liège, Belgium), F.P. Mills, A. Garcia Munoz (Australian National Univ.), D. Grassi, (INAF-IFSI, Roma, Italy), F.W. Taylor (Oxford Univ., UK), and the VIRTIS-Venus Express Technical Team.

[2] Visit the Venus Express web site at http://www.esa.int/SPECIALS/Venus_Express/index.html

[3] While never detected before on another planet besides Earth, hydroxyl is frequently observed in the atmosphere of comets.

Jennifer Martin | alfa
Further information:
http://www.aanda.org/content/view/305/42/lang,en/

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>