Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Use Lasers to Align Molecules

15.05.2008
Protein crystallographers have only scratched the surface of the human proteins important for drug interactions because of difficulties crystallizing the molecules for synchrotron x-ray diffraction.

Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have devised a way to eliminate the need for crystallization by using lasers to align large groups of molecules.

"Strong laser fields can be used to control the behavior of atoms and molecules," Argonne Distinguished Fellow Linda Young said. "Using x-rays, we can investigate their properties in a totally new way."

Crystallization allows scientists to create a periodic structure that will strongly diffract in specific directions when bombarded with x-rays. From the resulting diffraction pattern, a real-space image can be reconstructed. However, without crystallization, when x-rays collide with multiple, randomly oriented molecules, they diffract in different directions, making it impossible to create a composite diffraction image, Argonne Physicist Robin Santra said.

Some molecules, such as many involved with drug interaction, cannot be crystallized and imaging would require numerous samples to bombard in order to get a full composite picture. Young's laser technique allows for millions of molecules suspended in a gaseous state to be aligned so that when bombarded with x-rays, they all diffract in the same way. The resulting images are at atomic level resolution and do not require crystallization.

"Understanding the structure of the approximately 1 million human proteins that cannot be crystallized is perhaps the most important challenge facing structural biology," Young said. "A method for structure determination at atomic resolution without the need to crystallize would be revolutionary."

Young and her team have successfully aligned molecules using a laser, probed the aligned ensemble with x-rays and shown theoretically that the technique could be used for x-ray imaging (See E. R. Peterson et al., Applied Physics Letters 92, 094106 (2008)), but they require an proposed upgrade to the Advanced Photon Source facility located at Argonne before x-ray diffraction can be done experimentally.

Funding for this research was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

The mission of the Basic Energy Sciences (BES) program - a multipurpose, scientific research effort - is to foster and support fundamental research to expand the scientific foundations for new and improved energy technologies and for understanding and mitigating the environmental impacts of energy use. The portfolio supports work in the natural sciences, emphasizing fundamental research in materials sciences, chemistry, geosciences, and aspects of biosciences.

Argonne National Laboratory brings the world’s brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Brock Cooper | newswise
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>