Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find youngest supernova remnant in milky way

15.05.2008
An international team of astronomers have found the youngest known supernova remnant in the Galaxy. Using observations made with the Very Large Array (VLA) radio telescope in the US and the orbiting Chandra X-ray observatory, the scientists report that the remnant, G1.9+0.3, is just 150 years old. University of Cambridge scientist Dr Dave Green and colleagues discuss the discovery in a paper to be published in the journal Monthly Notices of the Royal Astronomical Society.

A supernova remnant (SNR) is the material ejected by a supernova, the explosion at the end of the life of a star much more massive than the Sun. In our own Galaxy, the Milky Way, there are about 250 known SNRs and up to now the youngest was thought to be about 340 years old.


Scientists including Dr Green and Dr Stephen Reynolds of North Carolina State University compared an X-ray image of G1.9+0.3 made using the Chandra satellite in 2007 with a radio image made with the VLA in 1985. They found that the SNR expanded considerably over the two decades, indicating it is very young. But the team were not sure whether some of the differences between the X-ray and radio images of G1.9+0.3 simply arose from comparing images made at very different frequencies from very different instruments.

To check their result, the team used the VLA to observe the SNR for a second time so that a direct comparison could be made with the 1985 image. The new observations confirm that G1.9+0.3 is expanding at an unprecedented rate, increasing its size by 15% in the intervening 23 years. Extrapolating backwards in time confirms G1.9+0.3 to be at most 150 years old, which makes it easily the youngest known SNR in our Galaxy and the only one that has been seen at such an early stage of its evolution. Another property of G1.9+0.3 that marks it out as unusual is that, uniquely among Galactic SNRs, it appears to have been increasing in radio brightness over the last few decades.

Although the distance to G1.9+0.3 is not known precisely, it is probably near the centre of our Galaxy. The SNR is obscured by a large amount of gas and dust, which means that Victorian astronomers would not have been able to see the explosion when it took place in the 1850s. Today scientists can observe the X-ray and radio emission from the ongoing aftermath of the explosion, as these penetrate the obscuring material.

Dr Green is delighted to have found such a young SNR. He comments "The discovery that G1.9+0.3 is so young is very exciting. It fits into a large gap in the known ages of supernova remnants, and since it is expanding so quickly, we will be able to follow its evolution over the coming years.”

Robert Massey | alfa
Further information:
http://www.ras.org.uk
http://chandra.harvard.edu/
http://www.nrao.edu/index.php/news/pressresources

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>