Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use robots to uncover the secrets of dragonfly flight

15.05.2008
Scientists from the Royal Veterinary College and University of Ulm have used a specially designed robot dragonfly to examine the aerodynamic consequences of four winged flight. The findings, published today in the Journal of the Royal Society Interface, could also be used to improve the development of micro air vehicles.

For 300 million years dragonflies have maintained their independently controllable, four winged form – whilst other flying insects have repeatedly modified or reduced one pair of wings or mechanically coupled their fore and hind wings. Previous studies into the flight of four-winged animals have suggested that the four winged form is not as efficient as using two wings.

In order to hover a dragonfly, just like a helicopter, has to push air downwards – this is referred to as the ‘wake’ or ‘downwash’. Any air motion that isn’t downward fails to support the body and is wasteful. This study shows that dragonflies are able to use their lower wings to recover energy wasted in side to side air motion in the wake – if they flap their wings at right time.

“I’ve been repeatedly struck by how inefficient dragonflies seem to be when they fly and I wondered whether they were using any additional tricks to become more efficient,” said Jim Usherwood, Wellcome Trust funded researcher at the Royal Veterinary College and co-author on the paper. “By working with Fritz-Olaf Lehmann, who has been developing flapping robots, we were able to simulate dragonfly flight and measure the aerodynamic forces. We found that two pairs of wings can allow the dragonfly to produce higher forces, allowing acceleration and climbing, whilst the lower wings are able to reduce energy wasted if the wings flap at the right time.”

Working with robot dragonflies allowed the researchers to look at what would happen if the front and back wings flapped with different timings – which would not have been possible to simulate with real dragonflies. Whilst most of the flapping timings were less efficient than hovering with one pair of wings, the scientists discovered that there were some instances when flapping with two pairs of wings was more efficient because it required less power to lift the same weight as just one pair of wings.

Whilst this research demonstrates that two pairs of wings have some aerodynamic advantages which have been used in insects for more than 300 million years, it could also be used to aid the development of micro air vehicles based on flapping designs. Such aerodynamic mechanisms used by dragonflies could, if technically feasible, be applied to allow micro air vehicles to fly a little longer or carry a larger load.

Becci Cussens | alfa
Further information:
http://www.rvc.ac.uk
http://www.uni-ulm.de

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>