Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use robots to uncover the secrets of dragonfly flight

15.05.2008
Scientists from the Royal Veterinary College and University of Ulm have used a specially designed robot dragonfly to examine the aerodynamic consequences of four winged flight. The findings, published today in the Journal of the Royal Society Interface, could also be used to improve the development of micro air vehicles.

For 300 million years dragonflies have maintained their independently controllable, four winged form – whilst other flying insects have repeatedly modified or reduced one pair of wings or mechanically coupled their fore and hind wings. Previous studies into the flight of four-winged animals have suggested that the four winged form is not as efficient as using two wings.

In order to hover a dragonfly, just like a helicopter, has to push air downwards – this is referred to as the ‘wake’ or ‘downwash’. Any air motion that isn’t downward fails to support the body and is wasteful. This study shows that dragonflies are able to use their lower wings to recover energy wasted in side to side air motion in the wake – if they flap their wings at right time.

“I’ve been repeatedly struck by how inefficient dragonflies seem to be when they fly and I wondered whether they were using any additional tricks to become more efficient,” said Jim Usherwood, Wellcome Trust funded researcher at the Royal Veterinary College and co-author on the paper. “By working with Fritz-Olaf Lehmann, who has been developing flapping robots, we were able to simulate dragonfly flight and measure the aerodynamic forces. We found that two pairs of wings can allow the dragonfly to produce higher forces, allowing acceleration and climbing, whilst the lower wings are able to reduce energy wasted if the wings flap at the right time.”

Working with robot dragonflies allowed the researchers to look at what would happen if the front and back wings flapped with different timings – which would not have been possible to simulate with real dragonflies. Whilst most of the flapping timings were less efficient than hovering with one pair of wings, the scientists discovered that there were some instances when flapping with two pairs of wings was more efficient because it required less power to lift the same weight as just one pair of wings.

Whilst this research demonstrates that two pairs of wings have some aerodynamic advantages which have been used in insects for more than 300 million years, it could also be used to aid the development of micro air vehicles based on flapping designs. Such aerodynamic mechanisms used by dragonflies could, if technically feasible, be applied to allow micro air vehicles to fly a little longer or carry a larger load.

Becci Cussens | alfa
Further information:
http://www.rvc.ac.uk
http://www.uni-ulm.de

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>