Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough! UNC scientists’ research promises improved X-ray machines using carbon nanotubes

02.07.2002


The basic technology that produces X-rays has remained essentially the same for a century, but now scientists and physicians at the University of North Carolina at Chapel Hill and Applied Nanotechnologies Inc. say they should be able to improve it significantly.



Experiments the team conducted have shown they can cause carbon nanotubes, a new form of carbon discovered about a decade ago, to generate intense electron beams that bombard a metal "target" to produce X-rays. Researchers say they have demonstrated that their cold-cathode device can generate sufficient X-ray flux to create images of extremities such as the human hand.

The advantage of using carbon nanotubes is that machines incorporating them can work at room temperature rather than the 1500 or so degrees Celsius that conventional X-ray machines now require and produce.


"If this works as well as we think it will, we can make such machines a lot smaller and cooler and be able to turn them on and off much faster," said Dr. Otto Z. Zhou, associate professor of physics and materials sciences. "Other advantages are that they should be cheaper, be safer in terms of the lower heat generated, last longer, use less electricity and produce higher resolution images.

"We believe we have made a major breakthrough in X-ray technology, and we are extremely excited about it."

A report on their experiments appears in the July 8 issue of Applied Physics Letters, a science and technology journal. Patents on the UNC work are pending.

Besides Zhou, authors are Dr. Guo Z. Yue, a former UNC faculty member now with United Solar Systems; Qi Oiu and Drs. Bo Gao and Hideo Shimoda of Applied Nanotechnologies Inc., students Yuan Cheng and Jian Zhang, and Dr. Jian Ping Lu, associate professor of physics and astronomy and applied and materials sciences. Dr. Sha Chang, associate professor of radiation oncology at the UNC School of Medicine, also participated in the project.

"Scientists and others, including the popular press, have shown a lot of interest in carbon nanotubes because of numerous potential applications," Zhou said. "They are very strong tubular structures formed from a single layer of carbon atoms and are only about a billionth of a meter in diameter."

In the past, UNC scientists and others have used carbon nanotubes to produce electrons, he said. What’s new is that until now, no one could generate enough electrons to create distinct images like conventional X-rays do. Nanotubes replace traditional metal filaments that must be heated to high temperatures before being subjected to an electric field. The tubes shed electrons easily because, being so small, they are extremely sharp.

"We already have taken pictures of human hands and fish that are as good as standard X-rays," Zhou said. "We think our images eventually will be clearer than conventional ones since we have a more pointed, tunable source of electrons. That would help doctors, for example, get more useful information from pictures of broken bones, for example."

The physicists are working with manufacturers to turn their discovery into working machines and expect to have them on the market within a year or two, he said.

Being able to miniaturize X-ray devices could have more major benefits, Zhou said, including allowing technicians to take X-rays inside or outside ambulances before ever leaving the scenes of accidents. No major technical obstacles remain in their way.

In addition, the new X-ray technology will allow manufacturing of large-scale X-ray scanning machines for industrial inspections, airport security screening and customs inspections.

Other uses of carbon nanotubes include flat panel display and telecommunications devices, fuel cells, high-strength composite materials and novel molecular electronics for the next generation of computers, he said. People have raised the possibility of using them to improve batteries, but no one demonstrated that they might work better than conventional materials until Zhou and his UNC team published a paper on the subject in January in Physical Review Letters.

That paper showed they could potentially improve electric batteries by using single-wall carbon nanotubes to help store electrical charges. They have patented the process of creating such nanotubes.


Zhou directs the N.C. Center for Nanoscale Materials at UNC. Applied Nanotechnologies Inc., which seeks to develop new industrial and medical applications for carbon nanotubes, is a new spin-off company resulting from his group’s work. Support for the experiments came from the Office of Naval Research and private sources.

Note: Zhou can be reached at (919) 962-3297 or Zhou@email.unc.edu
Contact: David Williamson, (919) 962-8596

David Williamson | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>