Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough! UNC scientists’ research promises improved X-ray machines using carbon nanotubes

02.07.2002


The basic technology that produces X-rays has remained essentially the same for a century, but now scientists and physicians at the University of North Carolina at Chapel Hill and Applied Nanotechnologies Inc. say they should be able to improve it significantly.



Experiments the team conducted have shown they can cause carbon nanotubes, a new form of carbon discovered about a decade ago, to generate intense electron beams that bombard a metal "target" to produce X-rays. Researchers say they have demonstrated that their cold-cathode device can generate sufficient X-ray flux to create images of extremities such as the human hand.

The advantage of using carbon nanotubes is that machines incorporating them can work at room temperature rather than the 1500 or so degrees Celsius that conventional X-ray machines now require and produce.


"If this works as well as we think it will, we can make such machines a lot smaller and cooler and be able to turn them on and off much faster," said Dr. Otto Z. Zhou, associate professor of physics and materials sciences. "Other advantages are that they should be cheaper, be safer in terms of the lower heat generated, last longer, use less electricity and produce higher resolution images.

"We believe we have made a major breakthrough in X-ray technology, and we are extremely excited about it."

A report on their experiments appears in the July 8 issue of Applied Physics Letters, a science and technology journal. Patents on the UNC work are pending.

Besides Zhou, authors are Dr. Guo Z. Yue, a former UNC faculty member now with United Solar Systems; Qi Oiu and Drs. Bo Gao and Hideo Shimoda of Applied Nanotechnologies Inc., students Yuan Cheng and Jian Zhang, and Dr. Jian Ping Lu, associate professor of physics and astronomy and applied and materials sciences. Dr. Sha Chang, associate professor of radiation oncology at the UNC School of Medicine, also participated in the project.

"Scientists and others, including the popular press, have shown a lot of interest in carbon nanotubes because of numerous potential applications," Zhou said. "They are very strong tubular structures formed from a single layer of carbon atoms and are only about a billionth of a meter in diameter."

In the past, UNC scientists and others have used carbon nanotubes to produce electrons, he said. What’s new is that until now, no one could generate enough electrons to create distinct images like conventional X-rays do. Nanotubes replace traditional metal filaments that must be heated to high temperatures before being subjected to an electric field. The tubes shed electrons easily because, being so small, they are extremely sharp.

"We already have taken pictures of human hands and fish that are as good as standard X-rays," Zhou said. "We think our images eventually will be clearer than conventional ones since we have a more pointed, tunable source of electrons. That would help doctors, for example, get more useful information from pictures of broken bones, for example."

The physicists are working with manufacturers to turn their discovery into working machines and expect to have them on the market within a year or two, he said.

Being able to miniaturize X-ray devices could have more major benefits, Zhou said, including allowing technicians to take X-rays inside or outside ambulances before ever leaving the scenes of accidents. No major technical obstacles remain in their way.

In addition, the new X-ray technology will allow manufacturing of large-scale X-ray scanning machines for industrial inspections, airport security screening and customs inspections.

Other uses of carbon nanotubes include flat panel display and telecommunications devices, fuel cells, high-strength composite materials and novel molecular electronics for the next generation of computers, he said. People have raised the possibility of using them to improve batteries, but no one demonstrated that they might work better than conventional materials until Zhou and his UNC team published a paper on the subject in January in Physical Review Letters.

That paper showed they could potentially improve electric batteries by using single-wall carbon nanotubes to help store electrical charges. They have patented the process of creating such nanotubes.


Zhou directs the N.C. Center for Nanoscale Materials at UNC. Applied Nanotechnologies Inc., which seeks to develop new industrial and medical applications for carbon nanotubes, is a new spin-off company resulting from his group’s work. Support for the experiments came from the Office of Naval Research and private sources.

Note: Zhou can be reached at (919) 962-3297 or Zhou@email.unc.edu
Contact: David Williamson, (919) 962-8596

David Williamson | EurekAlert!

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>