Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough! UNC scientists’ research promises improved X-ray machines using carbon nanotubes

02.07.2002


The basic technology that produces X-rays has remained essentially the same for a century, but now scientists and physicians at the University of North Carolina at Chapel Hill and Applied Nanotechnologies Inc. say they should be able to improve it significantly.



Experiments the team conducted have shown they can cause carbon nanotubes, a new form of carbon discovered about a decade ago, to generate intense electron beams that bombard a metal "target" to produce X-rays. Researchers say they have demonstrated that their cold-cathode device can generate sufficient X-ray flux to create images of extremities such as the human hand.

The advantage of using carbon nanotubes is that machines incorporating them can work at room temperature rather than the 1500 or so degrees Celsius that conventional X-ray machines now require and produce.


"If this works as well as we think it will, we can make such machines a lot smaller and cooler and be able to turn them on and off much faster," said Dr. Otto Z. Zhou, associate professor of physics and materials sciences. "Other advantages are that they should be cheaper, be safer in terms of the lower heat generated, last longer, use less electricity and produce higher resolution images.

"We believe we have made a major breakthrough in X-ray technology, and we are extremely excited about it."

A report on their experiments appears in the July 8 issue of Applied Physics Letters, a science and technology journal. Patents on the UNC work are pending.

Besides Zhou, authors are Dr. Guo Z. Yue, a former UNC faculty member now with United Solar Systems; Qi Oiu and Drs. Bo Gao and Hideo Shimoda of Applied Nanotechnologies Inc., students Yuan Cheng and Jian Zhang, and Dr. Jian Ping Lu, associate professor of physics and astronomy and applied and materials sciences. Dr. Sha Chang, associate professor of radiation oncology at the UNC School of Medicine, also participated in the project.

"Scientists and others, including the popular press, have shown a lot of interest in carbon nanotubes because of numerous potential applications," Zhou said. "They are very strong tubular structures formed from a single layer of carbon atoms and are only about a billionth of a meter in diameter."

In the past, UNC scientists and others have used carbon nanotubes to produce electrons, he said. What’s new is that until now, no one could generate enough electrons to create distinct images like conventional X-rays do. Nanotubes replace traditional metal filaments that must be heated to high temperatures before being subjected to an electric field. The tubes shed electrons easily because, being so small, they are extremely sharp.

"We already have taken pictures of human hands and fish that are as good as standard X-rays," Zhou said. "We think our images eventually will be clearer than conventional ones since we have a more pointed, tunable source of electrons. That would help doctors, for example, get more useful information from pictures of broken bones, for example."

The physicists are working with manufacturers to turn their discovery into working machines and expect to have them on the market within a year or two, he said.

Being able to miniaturize X-ray devices could have more major benefits, Zhou said, including allowing technicians to take X-rays inside or outside ambulances before ever leaving the scenes of accidents. No major technical obstacles remain in their way.

In addition, the new X-ray technology will allow manufacturing of large-scale X-ray scanning machines for industrial inspections, airport security screening and customs inspections.

Other uses of carbon nanotubes include flat panel display and telecommunications devices, fuel cells, high-strength composite materials and novel molecular electronics for the next generation of computers, he said. People have raised the possibility of using them to improve batteries, but no one demonstrated that they might work better than conventional materials until Zhou and his UNC team published a paper on the subject in January in Physical Review Letters.

That paper showed they could potentially improve electric batteries by using single-wall carbon nanotubes to help store electrical charges. They have patented the process of creating such nanotubes.


Zhou directs the N.C. Center for Nanoscale Materials at UNC. Applied Nanotechnologies Inc., which seeks to develop new industrial and medical applications for carbon nanotubes, is a new spin-off company resulting from his group’s work. Support for the experiments came from the Office of Naval Research and private sources.

Note: Zhou can be reached at (919) 962-3297 or Zhou@email.unc.edu
Contact: David Williamson, (919) 962-8596

David Williamson | EurekAlert!

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>