Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronaut health on moon may depend on good dusting

14.05.2008
Lunar dust could be more than a housekeeping issue for astronauts who visit the moon. Their good health may depend on the amount of exposure they have to the tiny particles.

To prepare for a return to the moon, researchers with the National Space Biomedical Research Institute (NSBRI) are evaluating how dust deposits in the lungs in reduced gravity in order to assess the health risk of long-term exposure to the particles. The findings will influence the design of lunar bases and could also provide benefits for health care on Earth, such as improved delivery of aerosol medications to the lungs.

NSBRI Human Factors and Performance Team researcher Dr. Kim Prisk said there are major questions that need to be answered. “In the big picture, the questions are: How much goes into the lung? Where does it go? How long does it stay? And how nasty is the stuff?” said Prisk, who is an adjunct professor in the Department of Medicine at the University of California, San Diego.

During the Apollo lunar missions in the late 1960s and 1970s, the clingy particles were easily transported via spacesuits into the lunar lander following moonwalks. The amount of dust inside the vehicle was so great some astronauts reported they could smell it.

Even though there were no known illnesses due to exposure, lunar dust is a concern because it has properties comparable to that of fresh-fractured quartz, a highly toxic substance. However, the Apollo flights lasted only a few days. During the proposed return to the moon, astronauts will be exposed to lunar dust for longer periods of time, including missions that could last months.

Due to the moon’s reduced gravity and the size of its dust particles, the respiratory system’s process to remove unwanted matter may not work as efficiently as it does on Earth. “In the moon’s fractional gravity, particles remain suspended in the airways rather than settling out, increasing the chances of distribution deep in the lung, with the possible consequence that the particles will remain there for a long period of time,” Prisk said.

The lungs are a highly sensitive organ because of the large surface area that delivers oxygen molecules through a thin membrane directly to the blood. The health risk to astronauts increases as dust particles go deeper into the lungs.

To conduct the research, scientists take measurements during flights on NASA’s Microgravity Research Aircraft. These airplanes are used to provide short periods of reduced- and zero-gravity during a series of steep climbs and descents.

“During the portions of the flight in which gravity is reduced to levels seen on the lunar surface, we inject particles into a mouthpiece through which the study participants breathe,” Prisk said. “Subjects breathe in and out, and we measure how the particles behave and how many end up inside the lung.”

Prisk said the research flights have been beneficial so far. “With the reduced-gravity flights, we’re improving the process of assessing environmental exposure to inhaled particles,” he said. “We’ve learned that tiny particles (less than 2.5 microns) which are the most significant in terms of damage, are greatly affected by alterations in gravity.”

The next step is to investigate the risks and determine ways to limit exposure. The severity of the risks will determine the level of engineering work needed to limit exposure to lunar dust, which also can cause problems for equipment.

As for benefits on Earth, the research could give scientists a better understanding of how the lungs work, improving the understanding of how particles distribute within the lungs.

“If we learn how to target drugs to specific areas inside the lung, it will be possible to achieve optimal results with small quantities of drugs delivered to exactly the right place in the lung, and it will minimize side effects,” Prisk said.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute’s science, technology and education projects take place at more than 70 institutions across the United States.

Brad Thomas | NSBRI
Further information:
http://www.bcm.edu
http://www.nsbri.org/NewsPublicOut/Release.epl?r=108

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>