Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronaut health on moon may depend on good dusting

14.05.2008
Lunar dust could be more than a housekeeping issue for astronauts who visit the moon. Their good health may depend on the amount of exposure they have to the tiny particles.

To prepare for a return to the moon, researchers with the National Space Biomedical Research Institute (NSBRI) are evaluating how dust deposits in the lungs in reduced gravity in order to assess the health risk of long-term exposure to the particles. The findings will influence the design of lunar bases and could also provide benefits for health care on Earth, such as improved delivery of aerosol medications to the lungs.

NSBRI Human Factors and Performance Team researcher Dr. Kim Prisk said there are major questions that need to be answered. “In the big picture, the questions are: How much goes into the lung? Where does it go? How long does it stay? And how nasty is the stuff?” said Prisk, who is an adjunct professor in the Department of Medicine at the University of California, San Diego.

During the Apollo lunar missions in the late 1960s and 1970s, the clingy particles were easily transported via spacesuits into the lunar lander following moonwalks. The amount of dust inside the vehicle was so great some astronauts reported they could smell it.

Even though there were no known illnesses due to exposure, lunar dust is a concern because it has properties comparable to that of fresh-fractured quartz, a highly toxic substance. However, the Apollo flights lasted only a few days. During the proposed return to the moon, astronauts will be exposed to lunar dust for longer periods of time, including missions that could last months.

Due to the moon’s reduced gravity and the size of its dust particles, the respiratory system’s process to remove unwanted matter may not work as efficiently as it does on Earth. “In the moon’s fractional gravity, particles remain suspended in the airways rather than settling out, increasing the chances of distribution deep in the lung, with the possible consequence that the particles will remain there for a long period of time,” Prisk said.

The lungs are a highly sensitive organ because of the large surface area that delivers oxygen molecules through a thin membrane directly to the blood. The health risk to astronauts increases as dust particles go deeper into the lungs.

To conduct the research, scientists take measurements during flights on NASA’s Microgravity Research Aircraft. These airplanes are used to provide short periods of reduced- and zero-gravity during a series of steep climbs and descents.

“During the portions of the flight in which gravity is reduced to levels seen on the lunar surface, we inject particles into a mouthpiece through which the study participants breathe,” Prisk said. “Subjects breathe in and out, and we measure how the particles behave and how many end up inside the lung.”

Prisk said the research flights have been beneficial so far. “With the reduced-gravity flights, we’re improving the process of assessing environmental exposure to inhaled particles,” he said. “We’ve learned that tiny particles (less than 2.5 microns) which are the most significant in terms of damage, are greatly affected by alterations in gravity.”

The next step is to investigate the risks and determine ways to limit exposure. The severity of the risks will determine the level of engineering work needed to limit exposure to lunar dust, which also can cause problems for equipment.

As for benefits on Earth, the research could give scientists a better understanding of how the lungs work, improving the understanding of how particles distribute within the lungs.

“If we learn how to target drugs to specific areas inside the lung, it will be possible to achieve optimal results with small quantities of drugs delivered to exactly the right place in the lung, and it will minimize side effects,” Prisk said.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute’s science, technology and education projects take place at more than 70 institutions across the United States.

Brad Thomas | NSBRI
Further information:
http://www.bcm.edu
http://www.nsbri.org/NewsPublicOut/Release.epl?r=108

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>