Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronaut health on moon may depend on good dusting

14.05.2008
Lunar dust could be more than a housekeeping issue for astronauts who visit the moon. Their good health may depend on the amount of exposure they have to the tiny particles.

To prepare for a return to the moon, researchers with the National Space Biomedical Research Institute (NSBRI) are evaluating how dust deposits in the lungs in reduced gravity in order to assess the health risk of long-term exposure to the particles. The findings will influence the design of lunar bases and could also provide benefits for health care on Earth, such as improved delivery of aerosol medications to the lungs.

NSBRI Human Factors and Performance Team researcher Dr. Kim Prisk said there are major questions that need to be answered. “In the big picture, the questions are: How much goes into the lung? Where does it go? How long does it stay? And how nasty is the stuff?” said Prisk, who is an adjunct professor in the Department of Medicine at the University of California, San Diego.

During the Apollo lunar missions in the late 1960s and 1970s, the clingy particles were easily transported via spacesuits into the lunar lander following moonwalks. The amount of dust inside the vehicle was so great some astronauts reported they could smell it.

Even though there were no known illnesses due to exposure, lunar dust is a concern because it has properties comparable to that of fresh-fractured quartz, a highly toxic substance. However, the Apollo flights lasted only a few days. During the proposed return to the moon, astronauts will be exposed to lunar dust for longer periods of time, including missions that could last months.

Due to the moon’s reduced gravity and the size of its dust particles, the respiratory system’s process to remove unwanted matter may not work as efficiently as it does on Earth. “In the moon’s fractional gravity, particles remain suspended in the airways rather than settling out, increasing the chances of distribution deep in the lung, with the possible consequence that the particles will remain there for a long period of time,” Prisk said.

The lungs are a highly sensitive organ because of the large surface area that delivers oxygen molecules through a thin membrane directly to the blood. The health risk to astronauts increases as dust particles go deeper into the lungs.

To conduct the research, scientists take measurements during flights on NASA’s Microgravity Research Aircraft. These airplanes are used to provide short periods of reduced- and zero-gravity during a series of steep climbs and descents.

“During the portions of the flight in which gravity is reduced to levels seen on the lunar surface, we inject particles into a mouthpiece through which the study participants breathe,” Prisk said. “Subjects breathe in and out, and we measure how the particles behave and how many end up inside the lung.”

Prisk said the research flights have been beneficial so far. “With the reduced-gravity flights, we’re improving the process of assessing environmental exposure to inhaled particles,” he said. “We’ve learned that tiny particles (less than 2.5 microns) which are the most significant in terms of damage, are greatly affected by alterations in gravity.”

The next step is to investigate the risks and determine ways to limit exposure. The severity of the risks will determine the level of engineering work needed to limit exposure to lunar dust, which also can cause problems for equipment.

As for benefits on Earth, the research could give scientists a better understanding of how the lungs work, improving the understanding of how particles distribute within the lungs.

“If we learn how to target drugs to specific areas inside the lung, it will be possible to achieve optimal results with small quantities of drugs delivered to exactly the right place in the lung, and it will minimize side effects,” Prisk said.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute’s science, technology and education projects take place at more than 70 institutions across the United States.

Brad Thomas | NSBRI
Further information:
http://www.bcm.edu
http://www.nsbri.org/NewsPublicOut/Release.epl?r=108

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>