Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Molecular Thermometer for the Distant Universe

13.05.2008
First accurate measurement of the temperature of the cosmic background at an early epoch

Astronomers have made use of ESO’s Very Large Telescope to detect for the first time in the ultraviolet the carbon monoxide molecule in a galaxy located almost 11 billion light-years away, a feat that had remained elusive for 25 years. This detection allows them to obtain the most precise measurement of the cosmic temperature at such a remote epoch.

The team of astronomers [1] aimed the UVES spectrograph on ESO’s VLT for more than 8 hours at a well-hidden galaxy whose light has taken almost 11 billion years to reach us, that is about 80% of the age of the Universe.

The only way this galaxy can be seen is through the imprint its interstellar gas leaves on the spectrum of an even more remote quasar [2]. “Quasars are here only used as a beacon in the very distant Universe. Interstellar clouds of gas in galaxies, located between the quasars and us on the same line of sight, absorb parts of the light emitted by the quasars. The resulting spectrum consequently presents dark ‘valleys’ that can be attributed to well-known elements and possibly molecules,” explains Raghunathan Srianand (Pune, India), who led the team making the observations.

Thanks to the power of the VLT and a very careful selection of the target - the target was selected among about ten thousands quasars - the team was able to discover the presence of normal and deuterated molecular hydrogen (H2, HD) and carbon monoxide (CO) molecules in the interstellar medium of this remote galaxy. “This is the first time that these three molecules have been detected in absorption in front of a quasar, a detection that has remained elusive for more than a quarter century,” says Cédric Ledoux (ESO), member of the team.

The same team had already broken the record for the most distant detection of molecular hydrogen in a galaxy that we see as it was when the Universe was less than 1.5 billion years old (see ESO 16/06).

The interstellar gas is the reservoir from which stars form and, as such, is an important component of galaxies. Furthermore, because the formation and the state of molecules are very sensitive to the physical conditions of the gas, which in turn depend on the rate at which stars are formed and their influence, the detailed study of the chemistry of the interstellar medium is an important tool to understand how galaxies form.

Based on their observations, the astronomers showed that the physical conditions prevailing in the interstellar gas in this remote galaxy are similar to what is seen in our Galaxy, the Milky Way.

But most importantly, the team was able to measure with the best ever precision the temperature of the cosmic background radiation in the remote Universe [3]. “Unlike other methods, measuring the temperature of the cosmic background using the CO molecule involves very few assumptions,” declares co-author Pasquier Noterdaeme.

If the Universe was formed in a ‘Big Bang’, as most astrophysicists infer, the glow of this primeval fireball should have been warmer in the past. This is exactly what is found by the new measurements. “Given the current measured temperature of 2.725 K, one would expect that the temperature 11 billion years ago was about 9.3 K,” says co-author Patrick Petitjean. “Our unique set of VLT observations allows us to deduce a temperature of 9.15 K, plus or minus 0.7 K, in excellent agreement with the theory.”

“We believe our analysis pioneers interstellar chemistry studies at high redshift and demonstrates that it is possible, together with the detection of other molecules such as HD or CH, to use interstellar chemistry to tackle important cosmological issues,” adds Srianand.

Notes

[1] The team is composed of Raghunathan Srianand?(IUCAA,?Pune, India), Pasquier Noterdaeme and Cédric Ledoux (ESO), and Patrick Petitjean (IAP, France). The same team already made the first measurement of the temperature of the cosmic microwave background radiation, at a time when the Universe was only about 2.5 billion years old, also using UVES on the VLT (see ESO 27/00). At that time, they could only measure a temperature in the range between 6 and 14 K.

[2] Quasars are extraordinarily luminous objects in the distant Universe, thought to be powered by supermassive black holes at the heart of galaxies. A single quasar could be a thousand times brighter than an entire galaxy of a hundred billion stars, and yet this remarkable amount of energy originates from a volume smaller than our Solar System.

[3] One of the fundamental predictions of the Hot Big Bang theory for the creation of the Universe is the existence of the Cosmic Microwave Background Radiation (CMBR). This relic radiation of the primeval fireball was discovered in 1964 by means of radio observations by American physicists Arno A. Penzias and Robert W. Wilson, who were rewarded with the Nobel Prize in 1978. Precision measurements by the COBE and WMAP satellites later showed that this ancient radiation fills the Universe, with a present-day temperature of slightly less than 3 degrees above absolute zero (2.725 K [Kelvin], or -270.4 °C). A particular prediction of the Big Bang theory is that the Universe cools when expanding, the temperature scaling with the dilution factor of the Universe (1 + redshift). At the redshift of the galaxy (2.41837), one would thus expect a temperature of 2.725 x (1 + 2.41837) = 9.315 K or -263.835 degree Celsius.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2008/pr-13-08.html

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>