Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TU Delft demonstrates for the first time how light squeezes through small holes

09.05.2008
How does light pass through a tiny hole? For the first time, Dr Aurele Adam and Prof. Paul Planken of Delft University of Technology, in conjunction with two South Korean and one German research groups, have succeeded in mapping this process properly.

Their research also promises a significant improvement in Terahertz microscopy in the long term, a potentially interesting new imaging technique, and Terahertz microspectroscopy, a technique for identifying tiny quantities of substances using light. Their findings will be published in the scientific journal Optics Express this week.

We know from physics that it is particularly difficult to pass light through a hole smaller than half the wavelength of the light used. With the help of fellow scientists, researchers at Delft University of Technology have managed to provide insight into this process by conducting measurements using what is known as Terahertz radiation (THz radiation). This is far-infrared light with an approximate frequency of 10^12 Hz. This type of radiation allows the researchers to measure the force of the penetrating light’s electrical field near the hole and not, as is usual, the intensity of the penetrating light.

The electrical field’s values reveal much more about how light behaves in such situations than intensity can. Measurement of the strength of the electrical field is done with great precision by measuring the refractive-index of a crystal near the hole using a laser beam. The crystal’s refractive index varies (very slightly) when in a variable electrical field. By measuring the variations in the refractive index, conclusions can be drawn on the strength of the light’s electrical field near the hole.

Bouwkamp
‘This process has never been mapped properly, mainly because the technology was not available to do so,’ says Planken. The experiments largely confirm, for the first time, what is known as the Bouwkamp model, named after a Dutch researcher who worked at Philips and who in 1950 created a theoretical model for the way in which light passes through small holes. For instance, the strength of the electrical field, as predicted by Bouwkamp, is greatest at the edge of the holes and the field’s strength indeed decreases in with decreasing frequency of the THz light used. In their experiments, the researchers also discovered that even if the hole is up to fifty times smaller than the wavelength used, sufficient light can pass through to allow measurements near the hole; an extremely difficult task using other methods. This technique has also enabled the researchers to record the entire process, allowing them to observe, slowed down a thousand billion (10^12) times, how the light exits the hole and subsequently how the light waves move outwards in the same way as ring-shaped ripples caused by a stone thrown into a pond.
Applications
The findings of Planken and his colleagues are not just significant from the point of view of fundamental science. They can help develop the use of Terahertz microscopy (THz). In the long term, Planken wishes to use the tiny holes as an improved source of THz light. The smaller these source holes become, the sharper the images that can be created using this technique and the easier it will be to measure small quantities of substances.

Terahertz radiation (with a frequency of about 10^12 Hz) is a type of electromagnetic radiation which is increasingly used to create images. After all, many materials, such as paper, plastics and clothing, are transparent to THz radiation, while they block visible light.

Terahertz microscopes do not yet provide such sharp images. The development of stronger and smaller sources and more sensitive detectors will improve the viability of creating images of, for example, biological cells using THz radiation.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl
http://www.optica.tudelft.nl/research/thz/THzprojects/hole.asp

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>