Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TU Delft demonstrates for the first time how light squeezes through small holes

09.05.2008
How does light pass through a tiny hole? For the first time, Dr Aurele Adam and Prof. Paul Planken of Delft University of Technology, in conjunction with two South Korean and one German research groups, have succeeded in mapping this process properly.

Their research also promises a significant improvement in Terahertz microscopy in the long term, a potentially interesting new imaging technique, and Terahertz microspectroscopy, a technique for identifying tiny quantities of substances using light. Their findings will be published in the scientific journal Optics Express this week.

We know from physics that it is particularly difficult to pass light through a hole smaller than half the wavelength of the light used. With the help of fellow scientists, researchers at Delft University of Technology have managed to provide insight into this process by conducting measurements using what is known as Terahertz radiation (THz radiation). This is far-infrared light with an approximate frequency of 10^12 Hz. This type of radiation allows the researchers to measure the force of the penetrating light’s electrical field near the hole and not, as is usual, the intensity of the penetrating light.

The electrical field’s values reveal much more about how light behaves in such situations than intensity can. Measurement of the strength of the electrical field is done with great precision by measuring the refractive-index of a crystal near the hole using a laser beam. The crystal’s refractive index varies (very slightly) when in a variable electrical field. By measuring the variations in the refractive index, conclusions can be drawn on the strength of the light’s electrical field near the hole.

Bouwkamp
‘This process has never been mapped properly, mainly because the technology was not available to do so,’ says Planken. The experiments largely confirm, for the first time, what is known as the Bouwkamp model, named after a Dutch researcher who worked at Philips and who in 1950 created a theoretical model for the way in which light passes through small holes. For instance, the strength of the electrical field, as predicted by Bouwkamp, is greatest at the edge of the holes and the field’s strength indeed decreases in with decreasing frequency of the THz light used. In their experiments, the researchers also discovered that even if the hole is up to fifty times smaller than the wavelength used, sufficient light can pass through to allow measurements near the hole; an extremely difficult task using other methods. This technique has also enabled the researchers to record the entire process, allowing them to observe, slowed down a thousand billion (10^12) times, how the light exits the hole and subsequently how the light waves move outwards in the same way as ring-shaped ripples caused by a stone thrown into a pond.
Applications
The findings of Planken and his colleagues are not just significant from the point of view of fundamental science. They can help develop the use of Terahertz microscopy (THz). In the long term, Planken wishes to use the tiny holes as an improved source of THz light. The smaller these source holes become, the sharper the images that can be created using this technique and the easier it will be to measure small quantities of substances.

Terahertz radiation (with a frequency of about 10^12 Hz) is a type of electromagnetic radiation which is increasingly used to create images. After all, many materials, such as paper, plastics and clothing, are transparent to THz radiation, while they block visible light.

Terahertz microscopes do not yet provide such sharp images. The development of stronger and smaller sources and more sensitive detectors will improve the viability of creating images of, for example, biological cells using THz radiation.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl
http://www.optica.tudelft.nl/research/thz/THzprojects/hole.asp

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>