Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XMM-Newton discovered part of the missing matter in the Universe

06.05.2008
A team of astronomers from Netherlands and Germany discovered part of the missing matter in the Universe using the European X-ray satellite XMM-Newton.

The existence of the tenuous hot gas, which is believed to be located within the connecting threads of the enormous cosmic web, was predicted by theoreticians about 10 years ago. However, its very low density hampered many attempts to detect it. Now astronomers discovered the hottest part of the missing matter made of atoms.

Most of the matter/energy in the Universe is of unknown nature – and astronomers call it dark. 72% of the Universe is a mysterious dark energy, causing an accelerated expansion of the Universe. Some 23% of the total amount of matter/energy is constituted by the so called dark matter, which is made of heavy particles still waiting to be discovered by particle physicists. Only 4.6% percent of the Universe is made of normal matter as we know it, consisting of protons and neutrons - called baryons - which together with electrons are the building blocks of atoms. Small as this percentage might be, still a big part of this "ordinary" baryonic matter is also missing. All the stars, galaxies, and gas that astronomers observe in the Universe account for less than a half of all the baryons that should be around.

All the matter in the Universe, including the galaxies observed with optical telescopes, is distributed in a web-like structure. Dense nodes of this cosmic web are clusters of galaxies, the biggest objects in the Universe. For about the past ten years, astronomers suspected that the missing baryonic matter is in the form of hot gas with very low densities which permeates the filamentary structure of the cosmic web. Due to its high temperature this gas is expected to emit primarily in the far-ultraviolet and X-ray band. However, the very low density of the gas makes its observation difficult.

Astronomers using the European XMM-Newton X-ray satellite observed a pair of clusters of galaxies - Abell 222 and Abell 223. The images and the spectra of this system revealed a bridge of hot gas connecting the clusters. "The hot gas that we see in this bridge or filament is probably the hottest and densest part of the diffuse gas in the cosmic web, which is believed to constitute about half of the baryonic matter in the Universe" says Norbert Werner from SRON Netherlands Institute for Space Research, the leader of the team reporting the discovery.

"The discovery of the warmest of the missing baryons is important as various models, while all predicting the missing baryons in some form of warm gas, tend to disagree about the extremes." adds Alexis Finoguenov, member of the team from the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany. "The discovery was made possible by a very fortunate geometry, where we see the filament along the line of sight, looking into it, instead of looking at it from the side.

This means that the entire emission from the filament is concentrated in a small region of the sky, making the observation of this low density gas possible for the first time" explains Jelle Kaastra, team member and senior scientist at SRON. "Prior to the sensitivity level achieved with deep XMM-Newton observations, we could only see the clusters, the dense knots of the web. Now we are starting to see the connecting wires of the immense cosmic 'spider' web" adds Aurora Simionescu, team member from MPE. "We saw the filament years ago as a bridge between the clusters in the distribution of the galaxies, and the gravitational weak lensing data also indicated the presence of a massive structure.

The discovery of the hot gas associated with this structure will help us to better understand the evolution of the cosmic web" says Jörg Dietrich, team member from the European Southern Observatory, who investigated this pair of clusters of galaxies for many years. "This is only the beginning. To understand the distribution of the matter within the cosmic web, we have to see more systems like this one. And ultimately launch a dedicated space observatory to observe the cosmic web with a much higher sensitivity than possible with the current satellites. Our result allows to set up reliable requirements for those new missions." concludes Norbert Werner.

Jasper Wamsteker | alfa
Further information:
http://www.sron.nl
http://www.mpa-garching.mpg.de/galform/data_vis/#flying_filament

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>