Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XMM-Newton discovered part of the missing matter in the Universe

06.05.2008
A team of astronomers from Netherlands and Germany discovered part of the missing matter in the Universe using the European X-ray satellite XMM-Newton.

The existence of the tenuous hot gas, which is believed to be located within the connecting threads of the enormous cosmic web, was predicted by theoreticians about 10 years ago. However, its very low density hampered many attempts to detect it. Now astronomers discovered the hottest part of the missing matter made of atoms.

Most of the matter/energy in the Universe is of unknown nature – and astronomers call it dark. 72% of the Universe is a mysterious dark energy, causing an accelerated expansion of the Universe. Some 23% of the total amount of matter/energy is constituted by the so called dark matter, which is made of heavy particles still waiting to be discovered by particle physicists. Only 4.6% percent of the Universe is made of normal matter as we know it, consisting of protons and neutrons - called baryons - which together with electrons are the building blocks of atoms. Small as this percentage might be, still a big part of this "ordinary" baryonic matter is also missing. All the stars, galaxies, and gas that astronomers observe in the Universe account for less than a half of all the baryons that should be around.

All the matter in the Universe, including the galaxies observed with optical telescopes, is distributed in a web-like structure. Dense nodes of this cosmic web are clusters of galaxies, the biggest objects in the Universe. For about the past ten years, astronomers suspected that the missing baryonic matter is in the form of hot gas with very low densities which permeates the filamentary structure of the cosmic web. Due to its high temperature this gas is expected to emit primarily in the far-ultraviolet and X-ray band. However, the very low density of the gas makes its observation difficult.

Astronomers using the European XMM-Newton X-ray satellite observed a pair of clusters of galaxies - Abell 222 and Abell 223. The images and the spectra of this system revealed a bridge of hot gas connecting the clusters. "The hot gas that we see in this bridge or filament is probably the hottest and densest part of the diffuse gas in the cosmic web, which is believed to constitute about half of the baryonic matter in the Universe" says Norbert Werner from SRON Netherlands Institute for Space Research, the leader of the team reporting the discovery.

"The discovery of the warmest of the missing baryons is important as various models, while all predicting the missing baryons in some form of warm gas, tend to disagree about the extremes." adds Alexis Finoguenov, member of the team from the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany. "The discovery was made possible by a very fortunate geometry, where we see the filament along the line of sight, looking into it, instead of looking at it from the side.

This means that the entire emission from the filament is concentrated in a small region of the sky, making the observation of this low density gas possible for the first time" explains Jelle Kaastra, team member and senior scientist at SRON. "Prior to the sensitivity level achieved with deep XMM-Newton observations, we could only see the clusters, the dense knots of the web. Now we are starting to see the connecting wires of the immense cosmic 'spider' web" adds Aurora Simionescu, team member from MPE. "We saw the filament years ago as a bridge between the clusters in the distribution of the galaxies, and the gravitational weak lensing data also indicated the presence of a massive structure.

The discovery of the hot gas associated with this structure will help us to better understand the evolution of the cosmic web" says Jörg Dietrich, team member from the European Southern Observatory, who investigated this pair of clusters of galaxies for many years. "This is only the beginning. To understand the distribution of the matter within the cosmic web, we have to see more systems like this one. And ultimately launch a dedicated space observatory to observe the cosmic web with a much higher sensitivity than possible with the current satellites. Our result allows to set up reliable requirements for those new missions." concludes Norbert Werner.

Jasper Wamsteker | alfa
Further information:
http://www.sron.nl
http://www.mpa-garching.mpg.de/galform/data_vis/#flying_filament

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>