Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysical fluid mechanics: A new method for simulating supersonic turbulence

06.05.2008
Using DEISA’s computational resources within the DECI framework, the FEARLESS project team has developed a new method for simulating turbulent fluids, which will open up new perspectives in the field of astrophysics.

Turbulence is worth studying, because of the fundamental role that it plays in astrophysics. Turbulence is frequently modelled by Large Eddy Simulations (LES), where the dynamics of turbulent eddies are computed on large scales, while a subgrid scale model approximates the influence of smaller eddies.

In astrophysics the LES approach is challenged, because gravity and thermal processes break the scale-invariance employed in LES over a wide range of scales.

In order to overcome this problem a method called Adaptive Mesh Refinement (AMR) can be used. AMR involves inserting computational grids of higher resolution into turbulent flow regions in which strong shock fronts are forming, and the gas is undergoing a process of gravitational collapse.

However, due to the extreme range of different length scales it is generally impossible to treat fully developed turbulence by means of AMR only. This would require too large a number of refined grids. For this reason, the FEARLESS team has developed a new method that combines AMR with a subgrid scale model that links the notions of AMR and LES.

“FEARLESS stands for Fluid mEchanis with Adaptively Refine Large Eddy SimulationS“, says Wolfram Schmidt, one of the two architects of the FEARLESS project. “This somewhat complicated title captures the major elements of our concept: We intend to carry out simulations of turbulent fluids using a method that adapts dynamically to the simulated flow by refining the computation in those regions in which turbulence is developing“, he explains.

Supercomputing resources are very much required in order to apply this method and the DEISA infrastructure has played an important role in the development of the project.

Results from these simulations are significant for ongoing research into the nature of turbulence in star-forming gas clouds in the Galaxy. The project team expects that FEARLESS will generate new perspectives in astrophysics through the as yet unrivalled levels of sophistication it achieves in the treatment of turbulence.

The FEARLESS project was initiated in 2005 by Jens Niemeyer and Wolfram Schmidt, two astrophysicists from the University of Würzburg in Germany.

Kirsti Turtiainen | alfa
Further information:
http://www.deisa.eu/press/FEARLESS.pdf
http://www.csc.fi

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>