Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysical fluid mechanics: A new method for simulating supersonic turbulence

06.05.2008
Using DEISA’s computational resources within the DECI framework, the FEARLESS project team has developed a new method for simulating turbulent fluids, which will open up new perspectives in the field of astrophysics.

Turbulence is worth studying, because of the fundamental role that it plays in astrophysics. Turbulence is frequently modelled by Large Eddy Simulations (LES), where the dynamics of turbulent eddies are computed on large scales, while a subgrid scale model approximates the influence of smaller eddies.

In astrophysics the LES approach is challenged, because gravity and thermal processes break the scale-invariance employed in LES over a wide range of scales.

In order to overcome this problem a method called Adaptive Mesh Refinement (AMR) can be used. AMR involves inserting computational grids of higher resolution into turbulent flow regions in which strong shock fronts are forming, and the gas is undergoing a process of gravitational collapse.

However, due to the extreme range of different length scales it is generally impossible to treat fully developed turbulence by means of AMR only. This would require too large a number of refined grids. For this reason, the FEARLESS team has developed a new method that combines AMR with a subgrid scale model that links the notions of AMR and LES.

“FEARLESS stands for Fluid mEchanis with Adaptively Refine Large Eddy SimulationS“, says Wolfram Schmidt, one of the two architects of the FEARLESS project. “This somewhat complicated title captures the major elements of our concept: We intend to carry out simulations of turbulent fluids using a method that adapts dynamically to the simulated flow by refining the computation in those regions in which turbulence is developing“, he explains.

Supercomputing resources are very much required in order to apply this method and the DEISA infrastructure has played an important role in the development of the project.

Results from these simulations are significant for ongoing research into the nature of turbulence in star-forming gas clouds in the Galaxy. The project team expects that FEARLESS will generate new perspectives in astrophysics through the as yet unrivalled levels of sophistication it achieves in the treatment of turbulence.

The FEARLESS project was initiated in 2005 by Jens Niemeyer and Wolfram Schmidt, two astrophysicists from the University of Würzburg in Germany.

Kirsti Turtiainen | alfa
Further information:
http://www.deisa.eu/press/FEARLESS.pdf
http://www.csc.fi

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>