Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers and milk: The common denominator

02.05.2008
Reading about a "random laser" for the first time, you might wonder whether this term refers to the laser in your CD player which plays the song titles in the random shuffle mode. In physics, however, "random lasers" refer to a class of microlasers which use the principle of random light scattering as an integral part of the laser operation.

In conventional lasers light is trapped between two highly reflecting mirrors where it is amplified by pumping from outside. Only when this amplification process is efficient enough, the laser begins to operate.

After the initiation of the modern study of random lasers by Nabil M. Lawandy (Brown University), it was demonstrated by Hui Cao (Northwestern/Yale) and coworkers that you don't necessarily require elaborate mirrors to confine light long enough for lasing from micron sized devices. All you need to do is to put light into a highly disordered medium where scattering in random directions takes place. This mechanism, similar to the multiple scattering of light which makes a glass of milk look white, can prevent the light from escaping too quickly. If the random medium is optically active, pumping it with energy from outside will result in the emission of coherent light at sharply defined frequencies and in random directions.

"In pratice, random lasers are small beads of micrometer size, too small to be seen by the human eye", says Hakan E. Türeci, a research associate in the Quantum Photonics Group at ETH Zurich, who coauthored the article with Li Ge, Stefan Rotter and A. Douglas Stone at Yale University. "Due to their robustness and ease of manufacture, these lasers are sometimes referred to as "laser paint" and have found various applications, currently commercially available, such as document security and remote sensing. There are envisioned application areas in diagnostic imaging and super-fast displays as well".

Laser theory extended

Conventional laser theory tries to describe the operation of a laser by looking at the resonances of the laser cavity. In a random laser these resonances are, due to the lack of any defining mirrors, however, not at all well defined. The resonances are so closely spaced that they cannot be looked at independently of each other. Türeci and co-workers at Yale University have now extended the conventional laser theory such that it can be applied to random lasers, one of the most exotic type of lasers in existence, as well. In recent experiments it was observed that a specific random laser always shines at the same frequencies, but at intensities which differ strongly from measurement to measurement. With their publication in Science the authors show that this result can be traced back to unusually strong interactions between the laser modes.

Türeci: "Future research in designing novel micro and nanolasers will benefit from our approach, and we are implementing some of these ideas already with experimental collaborators to improve, e.g. power output, directional emission, for different kinds of microlasers."

Roman Klingler | alfa
Further information:
http://www.phys.ethz.ch

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>