Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching the Heavens

02.05.2008
A new space mission, due to launch this month, is going to shed light on some of the most extreme astrophysical processes in nature - including pulsars, remnants of supernovae, and supermassive black holes.

It could even help us comprehend the origin and distribution of dark matter, write three scientists currently preparing for the GLAST mission from NASA’s Goddard Space Flight Centre in Greenbelt, Maryland, USA, in this month’s Physics World.

The Gamma-Ray Large Area Space Telescope (GLAST), to be launched on 16 May 2008, is a four-tonne observatory packed with state-of-the-art particle detectors that will study the gamma-ray sky in unprecedented detail.

Gamma rays are a form of electromagnetic radiation with much higher frequency and energy than visible light, UV light or even X-rays. Having such high energy, gamma rays are hard to collect and focus in the way that a conventional telescope does with visible light. Gamma rays are therefore the most difficult form of electromagnetic radiation to track in space.

Whereas visible light reveals thousands of stars and individual planets moving slowly across the sky, studying the skies at gamma-ray frequencies reveals a much weirder picture of space.

Gamma rays are not produced by hot, glowing objects, but from collisions between charged, very rapidly moving, particles and matter or light. The high frequency photons that are emitted from these collisions provide a glimpse of the most extreme astrophysical processes known.

Black holes, for example, accelerate matter to produce extreme energies in active galaxies. The gamma rays emitted in these scenarios have the equivalent energy to that of all the stars in an entire galaxy over all wavelengths.

Until now, however, existing ground-based gamma-ray detectors have not been sophisticated enough to measure these emissions in any detail over long periods. The astrophysicists cite looking for signatures of as-yet-unknown fundamental physical processes as a key reason for embarking on this project.

Julie McEnery, Steve Ritz and Neil Gehrels of NASA’s Goddard Space Centre, write, “We expect GLAST to have a large impact on many areas of astrophysics but what is most exciting are the surprises: with any luck, the greatest GLAST science has not even been thought of yet.”

Joseph Winters | alfa
Further information:
http://www.physicsworld.com

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>