Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching the Heavens

02.05.2008
A new space mission, due to launch this month, is going to shed light on some of the most extreme astrophysical processes in nature - including pulsars, remnants of supernovae, and supermassive black holes.

It could even help us comprehend the origin and distribution of dark matter, write three scientists currently preparing for the GLAST mission from NASA’s Goddard Space Flight Centre in Greenbelt, Maryland, USA, in this month’s Physics World.

The Gamma-Ray Large Area Space Telescope (GLAST), to be launched on 16 May 2008, is a four-tonne observatory packed with state-of-the-art particle detectors that will study the gamma-ray sky in unprecedented detail.

Gamma rays are a form of electromagnetic radiation with much higher frequency and energy than visible light, UV light or even X-rays. Having such high energy, gamma rays are hard to collect and focus in the way that a conventional telescope does with visible light. Gamma rays are therefore the most difficult form of electromagnetic radiation to track in space.

Whereas visible light reveals thousands of stars and individual planets moving slowly across the sky, studying the skies at gamma-ray frequencies reveals a much weirder picture of space.

Gamma rays are not produced by hot, glowing objects, but from collisions between charged, very rapidly moving, particles and matter or light. The high frequency photons that are emitted from these collisions provide a glimpse of the most extreme astrophysical processes known.

Black holes, for example, accelerate matter to produce extreme energies in active galaxies. The gamma rays emitted in these scenarios have the equivalent energy to that of all the stars in an entire galaxy over all wavelengths.

Until now, however, existing ground-based gamma-ray detectors have not been sophisticated enough to measure these emissions in any detail over long periods. The astrophysicists cite looking for signatures of as-yet-unknown fundamental physical processes as a key reason for embarking on this project.

Julie McEnery, Steve Ritz and Neil Gehrels of NASA’s Goddard Space Centre, write, “We expect GLAST to have a large impact on many areas of astrophysics but what is most exciting are the surprises: with any luck, the greatest GLAST science has not even been thought of yet.”

Joseph Winters | alfa
Further information:
http://www.physicsworld.com

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>