Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big black holes cook flambeed stellar pancakes

02.05.2008
According to two astrophysicists from Paris Observatory, the fate of stars that venture too close to massive black holes could be even more violent than previously believed. Not only are they crushed by the black hole’s huge gravity, but the process can also trigger a nuclear explosion that tears the star apart from within. In addition, shock waves in the pancake star carry a brief and very high peak of temperature outwards, that could give rise to a new type of X-ray or gamma-ray bursts.

Scientists have long understood that massive black holes lurking in galactic nuclei and weighing millions of Suns can disrupt stars that come too close. Due to intense tidal forces, the black hole’s gravity pulls harder on the nearest part of the star, an imbalance that pulls the star apart over a period of hours, once it gets inside the so-called “tidal radius”.

Now, Matthieu Brassart and Jean-Pierre Luminet of the Observatoire de Paris-Meudon, France, say the strain of these tidal forces can also trigger a nuclear explosion powerful enough to destroy the star from within. They carried out computer simulations of the final moments of such an unfortunate star’s life, as it penetrates deeply into the tidal field of a massive black hole.

When the star gets close enough the black hole (without falling into), the tidal forces flatten it into a pancake shape. Previous studies already performed by Luminet and collaborators twenty years ago had suggested this flattening would increase the density and temperature inside the star enough to trigger intense nuclear reactions that would tear it apart. But other studies had suggested that the picture would be complicated by shock waves generated during the flattening process, and that no nuclear explosion should occur.

The new simulations investigate the effects of shock waves in detail, and find that even when their effects are included, the conditions favour a nuclear explosion which will completely destroy the star, and which will be powerful enough to hurl much of the star’s matter out of the black hole’s reach.

Stellar fireworks

The tidal disruption of stars by black holes may already have been observed by X-ray telescopes such as GALEX, XMM and Chandra, although at a much later stage : several months after the event that rips the star apart, its matter starts swirling into the hole, heats up and releases ultraviolet light and X-rays. However, if pancake stars really do explode, then they could in principle allow these events to be detected at a much earlier stage. Future observatories, such as the Large Synoptic Survey Telescope (LSST), which will detect large numbers of supernovae, could turn up some explosions of this type.

But this might be not the only hazard facing the doomed star. Brassart and Luminet calculated that the shock waves inside the stellar pancake carry a brief (The rate of such "flambeed pancake stars" is estimated to about 0.00001 event per galaxy. Since almost every galaxy – including our own Milky Way – harbors a massive black hole in its centre, and since the universe is transparent to hard X and gamma radiation, several events of this kind per year should be detectable within the full observable universe.

Conclusion

The planned high-energy, all-sky surveys are the best suited to detect more flares of this type because of their large sky coverage. By providing a quick localization of flambeed stellar pancakes, followed by the detection of the corresponding afterglows in the optical, infrared, and radio bands, these missions could bring as much to the understanding of stellar disruptions by black holes as the Beppo-Sax and Swift telescopes did for the comprehension of gamma-ray bursts.

Jean-Pierre Luminet | alfa
Further information:
http://www.obspm.fr/actual/nouvelle/may08/crepe.en.shtml

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>