Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene-based gadgets may be just years away

02.05.2008
Researchers at The University of Manchester have produced tiny liquid crystal devices with electrodes made from graphene – an exciting development that could lead to computer and TV displays based on this technology.

Writing in the American Chemical Society’s journal Nano Letters, Dr Kostya Novoselov and colleagues from The School of Physics and Astronomy and The School of

Computer Science, report on the use of graphene as a transparent conductive coating for electro-optical devices – and show that its high transparency and low resistivity make it ideal for electrodes in liquid crystal devices.

Graphene was discovered at The University of Manchester back in 2004, by Professor Andre Geim FRS and Royal Society Research Fellow Dr Kostya Novoselov. This incredible one-atom-thick gauze of carbon atoms, which resembles chicken wire, has quickly become one of the hottest topics in physics and materials science.

“Graphene is only one atom thick, optically transparent, chemically inert, and an excellent conductor,” says Dr Novoselov, from the Manchester research team.

“These properties seem to make this material an excellent candidate for applications in various electro-optical devices that require conducting but transparent thin films.

We believe graphene should improve the durability and simplify the technology of potential electronic devices that interact with light.”

Prof Geim said: “Transparent conducting films are an essential part of many gadgets including common liquid crystal displays (LCDs) for computers, TVs and mobile phones.

“The underlying technology uses thin metal-oxide films based on indium. But indium is becoming an increasingly expensive commodity and, moreover, its supply is expected to be exhausted within just 10 years.

“Forget about oil – our civilisation will first run out of indium. Scientists have an urgent task on their hands to find new types of conductive transparent films.”

The Manchester research team has now demonstrated highly transparent and highly conductive ultra-thin films that can be produced cheaply by ‘dissolving’ chunks of graphite – an abundant natural resource – into graphene and then spraying the suspension onto a glass surface.

The resulting graphene-based films can be used in LCDs and, to prove the concept, the research team have demonstrated the first liquid crystal devices with graphene electrodes.

Dr Novoselov believes that there are only a few small, incremental steps remain for this technology to reach a mass production stage. “Graphene-based LCD products could appear in shops as soon as in a few years”, he adds.

A research team from the Max Planck Institute for Polymer Research in Germany recently reported in Nano Letters how they had used graphene-based films to create transparent electrodes for solar cells (1).

But the German team used a different technology for obtaining graphene films, which involved several extra steps.

The Manchester team says the films they have developed are much simpler to produce, and they can be used not only in LCDs but also in solar cells.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew

22.01.2018 | Agricultural and Forestry Science

Two dimensional circuit with magnetic quasi-particles

22.01.2018 | Physics and Astronomy

Electrical fields drive nano-machines a 100,000 times faster than previous methods

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>