Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic force microscopy reveals liquids adjust viscosity when confined, shaken

02.05.2008
Getting ketchup out of the bottle isn’t always easy. However, shaking the bottle before trying to pour allows the thick, gooey ketchup to flow more freely because it becomes more fluid when agitated. The opposite is not typically true – a liquid such as water does not become a gel when shaken.

However, new research published in the March 14 issue of the journal Physical Review Letters shows that when fluids like water and silicon oil are confined to a nanometer-sized space, they behave more like ketchup or toothpaste. Then, if these confined liquids are shaken, they become fluidic and exhibit the same structural and mechanical properties as those in thicker layers.

The study – the first to use an atomic force microscope to measure the viscosity of confined fluids – revealed that these liquids can respond and modify their viscosity based on environmental changes.

“Knowing this could be very important,” said Elisa Riedo, an assistant professor in the Georgia Tech School of Physics. “If a lubricant used in a piece of machinery becomes thick and gelatinous when squeezed between two solid surfaces, serious problems could occur. However, if the machine vibrated, the liquid could become fluidized.”

With funding from the National Science Foundation and the U.S. Department of Energy, Riedo and graduate student Tai-De Li used atomic force microscopy (AFM) to measure the behavior of thin and thick layers of liquids while they were vibrated. A nanometer-size spherical silicon tip was used to approach a mica surface immersed in water or silicon oil, while small lateral oscillations were applied to the cantilever support.

“Some researchers have measured the force it takes to squeeze out a fluid, but we took a different approach,” explained Riedo. “We are the first group to use AFM to study the viscosity of confined fluids from direct high-resolution lateral force measurements.”

The normal and lateral forces acting on the tip were measured directly and simultaneously as a function of the liquid film thickness. The ratio of stress to strain under vibratory conditions, called the viscoelastic modulus, was also measured at different frequencies and strains.

Riedo and Li measured the relaxation times of two wetting liquids: water and silicone oil (octamethylcylotetrasiloxane), which is primarily used as a lubricant or hydraulic fluid, and is the main ingredient in Silly Putty®.

“The relaxation time describes how active the molecules are. A longer relaxation time means it takes longer for the molecules to rearrange themselves back into their original shape after shaking them,” said Li. “Liquids have very short relaxation times – as soon as one stops shaking a bottle of water, it reverts to its original configuration.”

Experimental results showed that the relaxation time became orders of magnitude longer in water and silicone oil when they were confined, meaning they behaved more like gels or glass. The researchers also showed that the relaxation times depended on the shaking speed when the liquids were confined. However, in thick layers that were not confined, the molecules showed no dependence on the shaking speed and always relaxed very quickly, meaning they behaved like a “normal” liquid.

Longer relaxation times were observed when the water film was less than one nanometer thick, composed of about three molecules of water stacked on top of each other. Otherwise, its properties were the same as in a bottle of water. For silicone oil, a thickness of four nanometers was required before the properties were like those of a glassy material.

“We observed a nonlinear viscoelastic behavior remarkably similar to that widely observed in metastable complex fluids, such as gels or supercooled liquids,” noted Riedo. “Because we observed these phenomena in both water and silicone oil, we believe they are very general phenomena and may apply to all wetting liquids.”

Since the behavior of confined water observed in these experiments is similar to the behavior of supercooled water at -98.15 degrees Celsius, the researchers are currently examining whether confinement defines a lower effective temperature in the confined liquid.

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>