Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic force microscopy reveals liquids adjust viscosity when confined, shaken

02.05.2008
Getting ketchup out of the bottle isn’t always easy. However, shaking the bottle before trying to pour allows the thick, gooey ketchup to flow more freely because it becomes more fluid when agitated. The opposite is not typically true – a liquid such as water does not become a gel when shaken.

However, new research published in the March 14 issue of the journal Physical Review Letters shows that when fluids like water and silicon oil are confined to a nanometer-sized space, they behave more like ketchup or toothpaste. Then, if these confined liquids are shaken, they become fluidic and exhibit the same structural and mechanical properties as those in thicker layers.

The study – the first to use an atomic force microscope to measure the viscosity of confined fluids – revealed that these liquids can respond and modify their viscosity based on environmental changes.

“Knowing this could be very important,” said Elisa Riedo, an assistant professor in the Georgia Tech School of Physics. “If a lubricant used in a piece of machinery becomes thick and gelatinous when squeezed between two solid surfaces, serious problems could occur. However, if the machine vibrated, the liquid could become fluidized.”

With funding from the National Science Foundation and the U.S. Department of Energy, Riedo and graduate student Tai-De Li used atomic force microscopy (AFM) to measure the behavior of thin and thick layers of liquids while they were vibrated. A nanometer-size spherical silicon tip was used to approach a mica surface immersed in water or silicon oil, while small lateral oscillations were applied to the cantilever support.

“Some researchers have measured the force it takes to squeeze out a fluid, but we took a different approach,” explained Riedo. “We are the first group to use AFM to study the viscosity of confined fluids from direct high-resolution lateral force measurements.”

The normal and lateral forces acting on the tip were measured directly and simultaneously as a function of the liquid film thickness. The ratio of stress to strain under vibratory conditions, called the viscoelastic modulus, was also measured at different frequencies and strains.

Riedo and Li measured the relaxation times of two wetting liquids: water and silicone oil (octamethylcylotetrasiloxane), which is primarily used as a lubricant or hydraulic fluid, and is the main ingredient in Silly Putty®.

“The relaxation time describes how active the molecules are. A longer relaxation time means it takes longer for the molecules to rearrange themselves back into their original shape after shaking them,” said Li. “Liquids have very short relaxation times – as soon as one stops shaking a bottle of water, it reverts to its original configuration.”

Experimental results showed that the relaxation time became orders of magnitude longer in water and silicone oil when they were confined, meaning they behaved more like gels or glass. The researchers also showed that the relaxation times depended on the shaking speed when the liquids were confined. However, in thick layers that were not confined, the molecules showed no dependence on the shaking speed and always relaxed very quickly, meaning they behaved like a “normal” liquid.

Longer relaxation times were observed when the water film was less than one nanometer thick, composed of about three molecules of water stacked on top of each other. Otherwise, its properties were the same as in a bottle of water. For silicone oil, a thickness of four nanometers was required before the properties were like those of a glassy material.

“We observed a nonlinear viscoelastic behavior remarkably similar to that widely observed in metastable complex fluids, such as gels or supercooled liquids,” noted Riedo. “Because we observed these phenomena in both water and silicone oil, we believe they are very general phenomena and may apply to all wetting liquids.”

Since the behavior of confined water observed in these experiments is similar to the behavior of supercooled water at -98.15 degrees Celsius, the researchers are currently examining whether confinement defines a lower effective temperature in the confined liquid.

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Home computers discover a record-breaking pulsar-neutron star system
08.12.2016 | Max-Planck-Institut für Radioastronomie

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>