Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic force microscopy reveals liquids adjust viscosity when confined, shaken

02.05.2008
Getting ketchup out of the bottle isn’t always easy. However, shaking the bottle before trying to pour allows the thick, gooey ketchup to flow more freely because it becomes more fluid when agitated. The opposite is not typically true – a liquid such as water does not become a gel when shaken.

However, new research published in the March 14 issue of the journal Physical Review Letters shows that when fluids like water and silicon oil are confined to a nanometer-sized space, they behave more like ketchup or toothpaste. Then, if these confined liquids are shaken, they become fluidic and exhibit the same structural and mechanical properties as those in thicker layers.

The study – the first to use an atomic force microscope to measure the viscosity of confined fluids – revealed that these liquids can respond and modify their viscosity based on environmental changes.

“Knowing this could be very important,” said Elisa Riedo, an assistant professor in the Georgia Tech School of Physics. “If a lubricant used in a piece of machinery becomes thick and gelatinous when squeezed between two solid surfaces, serious problems could occur. However, if the machine vibrated, the liquid could become fluidized.”

With funding from the National Science Foundation and the U.S. Department of Energy, Riedo and graduate student Tai-De Li used atomic force microscopy (AFM) to measure the behavior of thin and thick layers of liquids while they were vibrated. A nanometer-size spherical silicon tip was used to approach a mica surface immersed in water or silicon oil, while small lateral oscillations were applied to the cantilever support.

“Some researchers have measured the force it takes to squeeze out a fluid, but we took a different approach,” explained Riedo. “We are the first group to use AFM to study the viscosity of confined fluids from direct high-resolution lateral force measurements.”

The normal and lateral forces acting on the tip were measured directly and simultaneously as a function of the liquid film thickness. The ratio of stress to strain under vibratory conditions, called the viscoelastic modulus, was also measured at different frequencies and strains.

Riedo and Li measured the relaxation times of two wetting liquids: water and silicone oil (octamethylcylotetrasiloxane), which is primarily used as a lubricant or hydraulic fluid, and is the main ingredient in Silly Putty®.

“The relaxation time describes how active the molecules are. A longer relaxation time means it takes longer for the molecules to rearrange themselves back into their original shape after shaking them,” said Li. “Liquids have very short relaxation times – as soon as one stops shaking a bottle of water, it reverts to its original configuration.”

Experimental results showed that the relaxation time became orders of magnitude longer in water and silicone oil when they were confined, meaning they behaved more like gels or glass. The researchers also showed that the relaxation times depended on the shaking speed when the liquids were confined. However, in thick layers that were not confined, the molecules showed no dependence on the shaking speed and always relaxed very quickly, meaning they behaved like a “normal” liquid.

Longer relaxation times were observed when the water film was less than one nanometer thick, composed of about three molecules of water stacked on top of each other. Otherwise, its properties were the same as in a bottle of water. For silicone oil, a thickness of four nanometers was required before the properties were like those of a glassy material.

“We observed a nonlinear viscoelastic behavior remarkably similar to that widely observed in metastable complex fluids, such as gels or supercooled liquids,” noted Riedo. “Because we observed these phenomena in both water and silicone oil, we believe they are very general phenomena and may apply to all wetting liquids.”

Since the behavior of confined water observed in these experiments is similar to the behavior of supercooled water at -98.15 degrees Celsius, the researchers are currently examining whether confinement defines a lower effective temperature in the confined liquid.

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>