Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University, Berkeley researchers develop method for transmitting medical images via cell phones

29.04.2008
A process to transmit medical images via cellular phones that has been developed by a Hebrew University of Jerusalem researcher has the potential to provide sophisticated radiological diagnoses and treatment to the majority of the world’s population lacking access to such technology.

This would include millions in developing nations as well as those in rural areas of developed countries who live considerable distances from modern medical centers.

Prof. Boris Rubinsky has demonstrated the feasibility of his new concept that can replace current systems -- which are based on conventional, stand-alone medical imaging devices -- with a new medical imaging system consisting of two independent components connected through cellular phone technology. The concept could be developed with various medical imaging modalities. This new technique is described in the latest online issue of the journal, Public Library of Science ONE (PLoS ONE).

Rubinsky is head of the Research Center for Research in Bioengineering in the Service of Humanity and Society at the Benin School of Computer Science and Engineering at the Hebrew University of Jerusalem and is also a professor of bioengineering and mechanical engineering at the University of California, Berkeley. Working with him on this project were Yair Granot and Antoni Ivorra, both of the Biophysics Graduate Group of the latter institution.

Their invention is jointly patented and owned by Yissum, the Hebrew University’s Technology Transfer Company, and by the University of California, Berkeley. Commercialization efforts will be made by Yissum and by Berkeley's technology transfer organization.

According to the World Health Organization, some three-quarters of the world's population has no access to ultrasounds, X-rays, magnetic resonance images and other medical imaging technology used for a wide range of applications, from detecting tumors to confirming signs of active tuberculosis infections to monitoring the health of developing fetuses during pregnancy.

The conventional medical imaging systems in use today -- self-contained units combining data acquisition hardware with software processing hardware and imaging display -- are expensive devices demanding sensitive handling and maintenance and extensive user training. Only those treatment centers with the required financial and manpower resources are usually able to acquire and utilize them. Even when such equipment does exist in developing countries, it is often not in use because it is too sophisticated or in disrepair or because the health personnel are not trained to use it, said Rubinsky.

"Imaging is considered one of the most important achievements in modern medicine. Diagnosis and treatment of an estimated 20 percent of diseases would benefit from medical imaging, yet this advancement has been out of reach for millions of people in the world because the equipment is too costly to maintain. Our system would make imaging technology inexpensive and accessible for these underserved populations," said Rubinsky.

Under the new technology developed by Rubinsky, an independent data acquisition device (DAD) at a remote patient site that is simple with limited controls and no image display capability would be connected via cellular phone technology with an advanced image reconstruction and hardware control multiserver unit at a central site (which can be anywhere in the world).

The cellular phone technology transmits unprocessed, raw data from the patient site DAD to the cutting- edge central facility that has the sophisticated software and hardware required for image reconstruction. This data is then returned from the central facility to the cellular phone at the DAD site in the form of an image and displayed on its screen. "The DAD can be made with off-the-shelf parts that somebody with basic technical training can operate,” Rubinsky noted.

The fact that the image itself is produced in a centralized location and not on the measurement device has the potential to make technological advances in medical imaging processing continuously available to remote areas of the world, which despite their lack of sophisticated equipment in general often do have cell phone communication. (Indeed, it is estimated that more than 60 percent of all cell phones currently in use in the world are in developing countries.)

Rubinsky stresses the key economic benefits of this new method: By simplifying the apparatus at the patient site, it reduces the cost of medical imaging devices in general. It also removes the need for advanced imaging training of the personnel at the patient site.

The researchers chose electrical impedance tomography (EIT) to demonstrate the feasibility of using cell phones in medical imaging. EIT is based upon the principle that diseased tissue transmits electrical currents differently from healthy tissue. The difference in resistance from electrical currents is translated into an image, which can be transmitted via cell phone technology.

Utilizing commercially available parts, the research team built a simple data acquisition device for the experiment. The device had 32 stainless steel electrodes – half to inject the electrical current and the other half to measure the voltage – connected to a gel-filled container that simulated breast tissue with a tumor.

A total of 225 voltage measurements were taken and uploaded to a cell phone, which was hooked up to the device with a USB cable. The cell phone was then used to dial into a powerful central computer that contained software to process the packet of raw data that was transmitted. An image was then reconstructed and sent back to the cell phone for viewing. The researchers verified that the simulated tumor was clearly visible in the image, demonstrating the proof-of-principle that this system is feasible.

The work on this project was supported by the National Center for Research Resources at the U.S. National Institutes of Health, the Israel Science Foundation and Florida Hospital in Orlando. Research is continuing to further develop the technology with various imaging modalities.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>