Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Princeton scientists discover exotic quantum state of matter

28.04.2008
'Quantum Hall-like effect' found in a bulk material without an applied magnetic field

A team of scientists from Princeton University has found that one of the most intriguing phenomena in condensed-matter physics -- known as the quantum Hall effect -- can occur in nature in a way that no one has ever before seen.

Writing in the April 24 issue of Nature, the scientists report that they have recorded this exotic behavior of electrons in a bulk crystal of bismuth-antimony without any external magnetic field being present. The work, while significant in a fundamental way, could also lead to advances in new kinds of fast quantum or "spintronic" computing devices, of potential use in future electronic technologies, the authors said.

"We had the right tool and the right set of ideas," said Zahid Hasan, an assistant professor of physics who led the research and propelled X-ray photons at the surface of the crystal to find the effect. The team used a high-energy, accelerator-based technique called "synchrotron photo-electron spectroscopy."

And, Hasan added, "We had the right material."

The quantum Hall effect has only been seen previously in atomically thin layers of semiconductors in the presence of a very high applied magnetic field. In exploring new realms and subjecting materials to extreme conditions, the scientists are seeking to enrich the basis for understanding how electrons move.

Robert Cava, the Russell Wellman Moore Professor of Chemistry and a co-author on the paper, worked with members of his team to produce the crystal in his lab over many months of trial-and-error. "This is one of those wonderful examples in science of an intense, extended collaboration between scientists in different fields," said Cava, also chair of the Department of Chemistry.

"This remarkable experiment is a major home run for the Princeton team," said Phuan Ong, a Princeton professor of physics who was not involved in the research. Ong, who also serves as assistant director of the Princeton Center for Complex Materials, added that the experiment "will spark a worldwide scramble to understand the new states and a major program to manipulate them for new electronic applications."

Electrons, which are electrically charged particles, behave in a magnetic field, as some scientists have put it, like a cloud of mosquitoes in a crosswind. In a material that conducts electricity, like copper, the magnetic "wind" pushes the electrons to the edges. An electrical voltage rises in the direction of this wind -- at right angles to the direction of the current flow. Edwin Hall discovered this unexpected phenomenon, which came to be known as the Hall effect, in 1879. The Hall effect has become a standard tool for assessing charge in electrical materials in physics labs worldwide.

In 1980, the German physicist Klaus von Klitzing studied the Hall effect with new tools. He enclosed the electrons in an atom-thin layer, and cooled them to near absolute zero in very powerful magnetic fields. With the electrons forced to move in a plane, the Hall effect, he found, changed in discrete steps, meaning that the voltage increased in chunks, rather than increasing bit by bit as it was expected to. Electrons, he found, act unpredictably when grouped together. His work won him the Nobel Prize in physics in 1985.

Daniel Tsui (now at Princeton) and Horst Stormer of Bell Laboratories did similar experiments, shortly after von Klitzing's. They used extremely pure semiconductor layers cooled to near absolute zero and subjected the material to the world's strongest magnet. In 1982, they suddenly saw something new. The electrons in the atom-thin layer seemed to "cooperate" and work together to form what scientists call a "quantum fluid," an extremely rare situation where electrons act identically, in lock-step, more like soup than as individually spinning units.

After a year of thinking, Robert Laughlin, now at Stanford University, devised a model that resembled a storm at sea in which the force of the magnetic wind and the electrons of this "quantum fluid" created new phenomena -- eddies and waves -- without being changed themselves. Simply put, he showed that the electrons in a powerful magnetic field condensed to form this quantum fluid related to the quantum fluids that occur in superconductivity and in liquid helium.

For their efforts, Tsui, Stormer and Laughlin won the Nobel Prize in physics in 1998.

Recently, theorist Charles Kane and his team at the University of Pennsylvania, building upon a model proposed by Duncan Haldane of Princeton, predicted that electrons should be able to form a Hall-like quantum fluid even in the absence of an externally applied magnetic field, in special materials where certain conditions of the electron orbit and the spinning direction are met. The electrons in these special materials are expected to generate their own internal magnetic field when they are traveling near the speed of light and are subject to the laws of relativity.

In search of that exotic electron behavior, Hasan's team decided to go beyond the conventional tools for measuring quantum Hall effects. They took the bulk three-dimensional crystal of bismuth-antimony, zapped it with ultra-fast X-ray photons and watched as the electrons jumped out. By fine-tuning the X-rays, they could directly take pictures of the dancing patterns of the electrons on the edges of the sample. The nature of the quantum Hall behavior in the bulk of the material was then identified by analyzing the unique dancing patterns observed on the surface of the material in their experiments.

Kane, the Penn theorist, views the Princeton work as extremely significant. "This experiment opens the door to a wide range of further studies," he said.

The images observed by the Princeton group provide the first direct evidence for quantum Hall-like behavior without external magnetic fields.

"What is exciting about this new method of looking at the quantum Hall-like behavior is that one can directly image the electrons on the edges of the sample, which was never done before," said Hasan. "This very direct look opens up a wide range of future possibilities for fundamental research opportunities into the quantum Hall behavior of matter."

Kitta MacPherson | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Physics and Astronomy:

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

nachricht Creative use of noise brings bio-inspired electronic improvement
26.09.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>