Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 3-D ultrasound could improve stroke diagnosis, care

28.04.2008
Using 3-D ultrasound technology they designed, Duke University bioengineers can compensate for the thickness and unevenness of the skull to see in real-time the arteries within the brain that most often clog up and cause strokes.

The researchers believe that these advances will ultimately improve the treatment of stroke patients, whether by giving emergency medical technicians (EMT) the ability to quickly scan the heads of potential stroke victims while in the ambulance or allowing physicians to easily monitor in real time the patients’ response to therapy at the bedside.

The results of the latest studies were reported online in the journal Ultrasound in Medicine & Biology. The research was supported by the National Institutes of Health and the Duke Translational Medicine Institute, with assistance from the Duke Echocardiography Laboratory.

“To our knowledge, this is the first time that real time 3-D ultrasound provided clear images of the major arteries within the brain,” said Nikolas Ivancevich, graduate student in Duke’s Pratt School of Engineering and first author of the paper. “Also for the first time, we have been able overcome the most challenging aspect of using ultrasound to scan the brain – the skull.”

The Duke laboratory, led by biomedical engineering professor Stephen Smith, has a long track record of modifying traditional 2-D ultrasound – like that used to image babies in utero – into more advanced 3-D scans, which can provide more detailed information. After inventing the technique in 1991, the team has shown its utility in developing specialized catheters and endoscopes for imaging the heart and blood vessels.

“This is an important step forward for scanning the vessels of the brain through the skull, and we believe that there are now no major technological barriers to ultimately using 3-D ultrasound to quickly diagnose stroke patients,” said Smith, senior author of the paper.

“I think it’s safe to say that within five to 10 years, the technology will be miniaturized to the point where EMTs in an ambulance can scan the brain of a stroke patient and transmit the results ahead to the hospital,” Smith continued. “Speed is important because the only approved medical treatment for stroke must be given within three hours of the first symptoms.”

Ultrasound devices emit sound waves and then create images by calculating the angle of the waves as they bounce back.

For their experiments, the Duke team studied 17 healthy people. After injecting them with a contrast dye to enhance the images, the researchers aimed ultrasound “wands,” or transducers, into the brain from three vantage points – the temples on each side of the head and upwards from the base of the neck. The temple locations were chosen because the skull is thinnest at these points.

Ivancevich took this approach one step further to compensate for the thickness and unevenness of the skull in one subject.

“The speed of the sound waves is faster in bone than it is in soft tissue, so we took measurements to better understand how the bone alters the movement of sound waves,” Ivancevich explained. “With this knowledge, we were able to program the computer to ‘correct’ for the skull’s interference, resulting in even clearer images of the arteries.”

The key to obtaining these images lies in the design of the transducer. In traditional 2-D ultrasound, the sound is emitted by a row of sensors. In the new design, the sensors are arranged in a checkerboard fashion, allowing compensation for the skull's thickness over a whole area, instead of a single line.

The 3-D ultrasound has the benefit of being less expensive and faster than the traditional methods of assessing blood flow in the brain – MRI or CT scanning, Ivancevich said. Though 3-D ultrasound will not totally displace MRI or CT scans, he said that the new technology would give physicians more flexibility in treating their patients.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

Hidden talents: Converting heat into electricity with pencil and paper

20.02.2018 | Materials Sciences

Rare find from the deep sea

20.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>