Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young Stars in Old Galaxies - a Cosmic Hide and Seek Game

26.06.2002


Surprise Discovery with World`s Leading Telescopes



Combining data from the NASA/ESA Hubble Space Telescope (HST) and the ESO Very Large Telescope (VLT), a group of European and American astronomers have made an unexpected, major discovery.

They have identified a huge number of "young" stellar clusters, only a few billion years old , inside an "old" elliptical galaxy (NGC 4365), probably aged some 12 billion years. For the first time, it has been possible to identify several distinct periods of star-formation in a galaxy as old as this one.


Elliptical galaxies like NGC 4365 have until now been considered to have undergone one early star-forming period and thereafter to be devoid of any star formation. However, the combination of the best and largest telescopes in space and on the ground has now clearly shown that there is more than meets the eye. This important new information will help to understand the early history of galaxies and the general theory of star formation in the Universe.

Do elliptical galaxies only contain old stars?

One of the challenges of modern astronomy is to understand how galaxies, those large systems of stars, gas and dust, form and evolve. In this connection, a central question has always been to learn when most of the stars in the Universe formed. Did this happen at a very early stage, within a few billion years after the Big Bang? Or were a significant number of the stars we now observe formed much more recently?

Spectacular collisions between galaxies take place all the time, triggering the formation of thousands or even millions of stars, cf. ESO PR Photo 29b/99 of the dramatic encounter between NGC 6872 and IC 4970. However, when looking at the Universe as a whole, most of its stars are found in large elliptical galaxies (this refers to their form) whose overall appearance has so far led us to believe that they, and their stars as well, are very old, indeed among the oldest objects in the Universe.

These elliptical galaxies do shine with the diffuse, reddish glow normally associated with stars that are many billions of years old. However, what is really the underlying mix of stars that produces this elderly appearance? Could perhaps a significant number of much younger stars be "hiding" among the older ones?

Whatever the case, this question must obviously be looked into, before it is possible to claim understanding of the evolution of these old galaxies. It is a very challenging investigation and it is only now that new and more detailed observations with the world`s premier telescopes have been obtained that cast more light on this central question and thus on the true behaviour of some of the major building blocks of the Universe.

Cosmic archaeology

In order to identify the constitutents of the stellar "cocktail" in elliptical galaxies, a team of European and American astronomers [2] observed massive stellar clusters in and around several nearby galaxies. These clusters, referred to as "globular" because of their shape, are present in large numbers around most galaxies and together they form a kind of "skeleton" within their host galaxies.

These "bones" receive an imprint for every episode of star formation they undergo. Thus, by reading the ages of the globular clusters in a galaxy, it is possible to identify the past epoch(s) of active star formation in that galaxy.

This is like digging into the ruins of an ancient archaeological city site and to find those layers and establish those times when the city underwent bursts of building activity. In this way, by the study of the distribution and ages of the globular clusters in an elliptical galaxy, astronomers can reveal when many of its stars were formed.

A surprise discovery

The team combined images in visual light of a number of galaxies from Hubble`s Wide Field and Planetary Camera 2 (WFPC2) with infrared images obtained with the multi-mode ISAAC instrument on the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory (Chile). When measuring very accurately the colours of the globular clusters in one of these galaxies, NGC 4365 that is a member of the large Virgo Cluster of galaxies, they discovered to their great surprise that many of these clusters are only a few billion years old, i.e. much younger than the age of most other stars in that galaxy, roughly 12 billion years.

In fact, the astronomers were able to identify three major groups of globular clusters in NGC 4365. First, there is an old population of clusters of metal-poor stars, then there are some clusters of old, but metal-rich stars and now, seen for the first time, a third population of clusters with young and metal-rich stars.

"We needed the combination of the Hubble and the VLT with the latest space- and ground-based astronomical technology to break this new ground", says group leader Markus Kissler-Patig from the European Southern Observatory Headquarters in Garching (Germany). "Once we had found those young clusters, we then went on to observe them spectroscopically with another of the world`s giant telescopes, the 10-m Keck on Hawaii - and this fully confirmed our results."

A new important clue to the evolution of the Universe

This is a surprising discovery since the stars in giant elliptical galaxies were until now believed to have formed exclusively early on in the history of the Universe.

However, it is now clear that some of the old galaxies may have been hiding their true nature and have indeed experienced much more recent periods of major star formation.

This is priceless new information for the current attempts to understand the early history of galaxies and the general theory of star formation in the Universe.

More information

The information presented in this Press Release is based on a research article that has been accepted for publication in the European journal "Astronomy & Astrophysics" ("Extragalactic Globular Clusters in the Near-Infrared: II. The Globular Cluster Systems of NGC 3115 and NGC 4365" by Thomas H. Puzia, Stephen E. Zepf, Markus Kissler-Patig, Michael Hilker, Dante Minniti and Paul Goudfrooij; astro-ph/0206147).

Richard West | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2002/pr-11-02.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>