Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young Stars in Old Galaxies - a Cosmic Hide and Seek Game

26.06.2002


Surprise Discovery with World`s Leading Telescopes



Combining data from the NASA/ESA Hubble Space Telescope (HST) and the ESO Very Large Telescope (VLT), a group of European and American astronomers have made an unexpected, major discovery.

They have identified a huge number of "young" stellar clusters, only a few billion years old , inside an "old" elliptical galaxy (NGC 4365), probably aged some 12 billion years. For the first time, it has been possible to identify several distinct periods of star-formation in a galaxy as old as this one.


Elliptical galaxies like NGC 4365 have until now been considered to have undergone one early star-forming period and thereafter to be devoid of any star formation. However, the combination of the best and largest telescopes in space and on the ground has now clearly shown that there is more than meets the eye. This important new information will help to understand the early history of galaxies and the general theory of star formation in the Universe.

Do elliptical galaxies only contain old stars?

One of the challenges of modern astronomy is to understand how galaxies, those large systems of stars, gas and dust, form and evolve. In this connection, a central question has always been to learn when most of the stars in the Universe formed. Did this happen at a very early stage, within a few billion years after the Big Bang? Or were a significant number of the stars we now observe formed much more recently?

Spectacular collisions between galaxies take place all the time, triggering the formation of thousands or even millions of stars, cf. ESO PR Photo 29b/99 of the dramatic encounter between NGC 6872 and IC 4970. However, when looking at the Universe as a whole, most of its stars are found in large elliptical galaxies (this refers to their form) whose overall appearance has so far led us to believe that they, and their stars as well, are very old, indeed among the oldest objects in the Universe.

These elliptical galaxies do shine with the diffuse, reddish glow normally associated with stars that are many billions of years old. However, what is really the underlying mix of stars that produces this elderly appearance? Could perhaps a significant number of much younger stars be "hiding" among the older ones?

Whatever the case, this question must obviously be looked into, before it is possible to claim understanding of the evolution of these old galaxies. It is a very challenging investigation and it is only now that new and more detailed observations with the world`s premier telescopes have been obtained that cast more light on this central question and thus on the true behaviour of some of the major building blocks of the Universe.

Cosmic archaeology

In order to identify the constitutents of the stellar "cocktail" in elliptical galaxies, a team of European and American astronomers [2] observed massive stellar clusters in and around several nearby galaxies. These clusters, referred to as "globular" because of their shape, are present in large numbers around most galaxies and together they form a kind of "skeleton" within their host galaxies.

These "bones" receive an imprint for every episode of star formation they undergo. Thus, by reading the ages of the globular clusters in a galaxy, it is possible to identify the past epoch(s) of active star formation in that galaxy.

This is like digging into the ruins of an ancient archaeological city site and to find those layers and establish those times when the city underwent bursts of building activity. In this way, by the study of the distribution and ages of the globular clusters in an elliptical galaxy, astronomers can reveal when many of its stars were formed.

A surprise discovery

The team combined images in visual light of a number of galaxies from Hubble`s Wide Field and Planetary Camera 2 (WFPC2) with infrared images obtained with the multi-mode ISAAC instrument on the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory (Chile). When measuring very accurately the colours of the globular clusters in one of these galaxies, NGC 4365 that is a member of the large Virgo Cluster of galaxies, they discovered to their great surprise that many of these clusters are only a few billion years old, i.e. much younger than the age of most other stars in that galaxy, roughly 12 billion years.

In fact, the astronomers were able to identify three major groups of globular clusters in NGC 4365. First, there is an old population of clusters of metal-poor stars, then there are some clusters of old, but metal-rich stars and now, seen for the first time, a third population of clusters with young and metal-rich stars.

"We needed the combination of the Hubble and the VLT with the latest space- and ground-based astronomical technology to break this new ground", says group leader Markus Kissler-Patig from the European Southern Observatory Headquarters in Garching (Germany). "Once we had found those young clusters, we then went on to observe them spectroscopically with another of the world`s giant telescopes, the 10-m Keck on Hawaii - and this fully confirmed our results."

A new important clue to the evolution of the Universe

This is a surprising discovery since the stars in giant elliptical galaxies were until now believed to have formed exclusively early on in the history of the Universe.

However, it is now clear that some of the old galaxies may have been hiding their true nature and have indeed experienced much more recent periods of major star formation.

This is priceless new information for the current attempts to understand the early history of galaxies and the general theory of star formation in the Universe.

More information

The information presented in this Press Release is based on a research article that has been accepted for publication in the European journal "Astronomy & Astrophysics" ("Extragalactic Globular Clusters in the Near-Infrared: II. The Globular Cluster Systems of NGC 3115 and NGC 4365" by Thomas H. Puzia, Stephen E. Zepf, Markus Kissler-Patig, Michael Hilker, Dante Minniti and Paul Goudfrooij; astro-ph/0206147).

Richard West | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2002/pr-11-02.html

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>