Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusual Ceramics Could Expand Possibilities For Superconductors

26.06.2002


Ceramic materials with "split personalities" could lead to new high-temperature superconductors, according to physicists at Ohio State University and their colleagues.



Researchers here have learned that these ceramic materials, called cuprates (pronounced KOOP-rates), switch between two different kinds of superconductivity under certain circumstances.

The finding could settle a growing controversy among scientists and point the way to buckyball-like superconductivity in ceramics.


Scientists have been arguing for years whether cuprates exhibit one type of superconductivity, called d-wave, or another type, called s-wave, explained Thomas Lemberger, professor of physics.

The difference depends on how the electrons are arranged within the material, he said. Materials with s-wave behavior are more desirable, because they should have better technical properties at high temperatures. Unfortunately, most of the high-temperature cuprate compounds seem to exhibit d-wave behavior. S-wave superconductivity at high temperatures is still a possibility and is a goal of current research, Lemberger said.

For instance, buckyballs -- soccer-ball-shaped carbon molecules discovered at Bell Labs in 1991 -- exhibit s-wave superconductivity at 40° Kelvin (-388°F, -233°C), a very high temperature for superconductors. To achieve this, the Bell Labs scientists mixed, or "doped," the buckyballs with potassium.

Now Lemberger and his colleagues have found they can change the behavior of a certain class of cuprates from d-wave to s-wave if they dope it with sufficient amounts of the element cerium -- a common ingredient in glassware.

"It seems that the mechanisms for both kinds of behavior are always present in these materials," Lemberger said. "So if you do something to suppress one behavior, a cuprate will automatically switch to the other."

They report their results in two papers in a recent issue of the journal Physical Review Letters. Lemberger, doctoral student John Skinta and postdoctoral researcher Mun-Seog Kim collaborated with Tine Greibe and Michio Naito, both materials scientists at NTT Basic Research Laboratories in Japan.

Since their discovery in 1986, cuprates have puzzled scientists. Ceramics are normally insulators, but when doped with atoms of elements like lanthanum or cerium, cuprates suddenly become excellent conductors.

"That’s what’s so amazing about these materials," Lemberger said. "A cuprate could start out as a very good insulator; you could subject it to thousands of volts and it won’t conduct electricity at all. But change the composition just a little, and you’ve turned it into a superconductor. With the tiniest wisp of voltage, you’ll get huge currents flowing."

Normal doping involves adding small quantities of a secondary material in order to boost the number of mobile electrons in a sample. Over-doping, as the Ohio State physicists and their colleagues did, is roughly equivalent to over-stuffing the material with electrons -- as many electrons as the cuprate would hold while still maintaining its unique crystal structure.

They created thin films of cuprates with different amounts of cerium, and studied how the electrons arranged themselves within the material. They did this by measuring how deeply a magnetic field could penetrate each film.

As the researchers pushed the cerium content of the cuprates to the limit, the magnetic field measurements suggested that the electrons had changed their formation from d-wave to s-wave.

Scientists have speculated that cuprates could sustain s-wave superconductivity at temperatures as high as 90° Kelvin
(-298°F, -183°C). That would make the materials useful conductors for commercial electronics. If metal conductors were replaced with superconducting ceramics, devices would be more efficient, and new types of devices would become possible. And 90° Kelvin, while very cold, is still easier and less expensive to achieve than 10° Kelvin (-442°F, -263°C), the operating temperature of conventional metallic superconductors.

Lemberger said the scientific controversy surrounding the nature of superconductivity in cuprates will come to a head this summer, as researchers gather in Taiwan to debate which of the two "personalities," d-wave or s-wave, is the true state of the material.

"Our work bridges the gap between the two camps," Lemberger said. "We propose that it’s just a matter of composition."

"The question now is, how high can we push s-wave superconductivity?" he added.

The National Science Foundation funded this work.


Contact: Thomas Lemberger, (614) 292-7799; Lemberger.1@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Thomas Lemberger | EurekAlert!
Further information:
http://prl.aps.org/
http://www.nsf.gov/

More articles from Physics and Astronomy:

nachricht Nanotechnology for energy materials: Electrodes like leaf veins
27.09.2016 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht First quantum photonic circuit with electrically driven light source
27.09.2016 | Westfälische Wilhelms-Universität Münster

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>