Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusual Ceramics Could Expand Possibilities For Superconductors

26.06.2002


Ceramic materials with "split personalities" could lead to new high-temperature superconductors, according to physicists at Ohio State University and their colleagues.



Researchers here have learned that these ceramic materials, called cuprates (pronounced KOOP-rates), switch between two different kinds of superconductivity under certain circumstances.

The finding could settle a growing controversy among scientists and point the way to buckyball-like superconductivity in ceramics.


Scientists have been arguing for years whether cuprates exhibit one type of superconductivity, called d-wave, or another type, called s-wave, explained Thomas Lemberger, professor of physics.

The difference depends on how the electrons are arranged within the material, he said. Materials with s-wave behavior are more desirable, because they should have better technical properties at high temperatures. Unfortunately, most of the high-temperature cuprate compounds seem to exhibit d-wave behavior. S-wave superconductivity at high temperatures is still a possibility and is a goal of current research, Lemberger said.

For instance, buckyballs -- soccer-ball-shaped carbon molecules discovered at Bell Labs in 1991 -- exhibit s-wave superconductivity at 40° Kelvin (-388°F, -233°C), a very high temperature for superconductors. To achieve this, the Bell Labs scientists mixed, or "doped," the buckyballs with potassium.

Now Lemberger and his colleagues have found they can change the behavior of a certain class of cuprates from d-wave to s-wave if they dope it with sufficient amounts of the element cerium -- a common ingredient in glassware.

"It seems that the mechanisms for both kinds of behavior are always present in these materials," Lemberger said. "So if you do something to suppress one behavior, a cuprate will automatically switch to the other."

They report their results in two papers in a recent issue of the journal Physical Review Letters. Lemberger, doctoral student John Skinta and postdoctoral researcher Mun-Seog Kim collaborated with Tine Greibe and Michio Naito, both materials scientists at NTT Basic Research Laboratories in Japan.

Since their discovery in 1986, cuprates have puzzled scientists. Ceramics are normally insulators, but when doped with atoms of elements like lanthanum or cerium, cuprates suddenly become excellent conductors.

"That’s what’s so amazing about these materials," Lemberger said. "A cuprate could start out as a very good insulator; you could subject it to thousands of volts and it won’t conduct electricity at all. But change the composition just a little, and you’ve turned it into a superconductor. With the tiniest wisp of voltage, you’ll get huge currents flowing."

Normal doping involves adding small quantities of a secondary material in order to boost the number of mobile electrons in a sample. Over-doping, as the Ohio State physicists and their colleagues did, is roughly equivalent to over-stuffing the material with electrons -- as many electrons as the cuprate would hold while still maintaining its unique crystal structure.

They created thin films of cuprates with different amounts of cerium, and studied how the electrons arranged themselves within the material. They did this by measuring how deeply a magnetic field could penetrate each film.

As the researchers pushed the cerium content of the cuprates to the limit, the magnetic field measurements suggested that the electrons had changed their formation from d-wave to s-wave.

Scientists have speculated that cuprates could sustain s-wave superconductivity at temperatures as high as 90° Kelvin
(-298°F, -183°C). That would make the materials useful conductors for commercial electronics. If metal conductors were replaced with superconducting ceramics, devices would be more efficient, and new types of devices would become possible. And 90° Kelvin, while very cold, is still easier and less expensive to achieve than 10° Kelvin (-442°F, -263°C), the operating temperature of conventional metallic superconductors.

Lemberger said the scientific controversy surrounding the nature of superconductivity in cuprates will come to a head this summer, as researchers gather in Taiwan to debate which of the two "personalities," d-wave or s-wave, is the true state of the material.

"Our work bridges the gap between the two camps," Lemberger said. "We propose that it’s just a matter of composition."

"The question now is, how high can we push s-wave superconductivity?" he added.

The National Science Foundation funded this work.


Contact: Thomas Lemberger, (614) 292-7799; Lemberger.1@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Thomas Lemberger | EurekAlert!
Further information:
http://prl.aps.org/
http://www.nsf.gov/

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>