Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving magnetic fusion devices with gyrokinetic simulations of plasma turbulence

22.04.2008
The GYROKINETICS project team further developed the gyrokinetic simulation approach to plasma turbulence, which is expected to help improve the performance of magnetic confinement fusion devices.

Magnetic confinement fusion has the potential to provide a substantial proportion of the world’s energy needs in the 21st century in a safe and environmentally friendly way. Its realisation is, however, hampered by the complex behavior of hot collisionless plasmas (ion gases) in strong magnetic fields. Such plasmas are subject to temperature and density gradient driven microturbulence which leads to particle and heat losses and tends to keep the plasma from reaching a "burning" state.

Simulations are necessary if we are to understand and control plasma microturbulence. However, because fusion plasmas are virtually collisionless, a three-dimensional (i.e., in space) fluid description must, in principle, be abandoned, in favor of a six-dimensional (i.e., in phase space) kinetic one.

Fortunately, several processes on very small spatio-temporal scales – such as the gyrating motion of the particles around magnetic field lines – can be removed, analytically, from the basic equations, thus making the problem five-dimensional. This reduces the computational requirements by many orders of magnitude, without sacrificing accuracy. This approach is called gyrokinetics, which gave the present project its name.

The GYROKINETICS project was carried out in 2006 and 2007 by researchers from the Max Planck Institute for Plasma Physics at Garching, Germany, and the Ecole Polytechnique Fédérale of Lausanne, in Switzerland using DEISA’s resources under the DECI and the JRA3 frameworks.

As a result, the research group were able to show that certain small-scale turbulent processes can make substantial contributions to the overall heat transport carried by the plasma electrons. It turned out, in particular, that there often tends to be a scale separation between ion and electron thermal transport. While the former is usually carried more or less exclusively by long wavelength fluctuations, a substantial proportion of the latter can be carried by much smaller scales.

These findings represent an important new insight into the physics of turbulent transport in magnetized plasmas, and will have important implications for future full-torus simulations of large fusion devices, such as the International Thermonuclear Experimental Reactor ITER.

Kirsti Turtiainen | alfa
Further information:
http://www.deisa.eu/press/GYROKINETICS.pdf

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

How cheetahs stay fit and healthy

24.03.2017 | Life Sciences

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>