Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving magnetic fusion devices with gyrokinetic simulations of plasma turbulence

22.04.2008
The GYROKINETICS project team further developed the gyrokinetic simulation approach to plasma turbulence, which is expected to help improve the performance of magnetic confinement fusion devices.

Magnetic confinement fusion has the potential to provide a substantial proportion of the world’s energy needs in the 21st century in a safe and environmentally friendly way. Its realisation is, however, hampered by the complex behavior of hot collisionless plasmas (ion gases) in strong magnetic fields. Such plasmas are subject to temperature and density gradient driven microturbulence which leads to particle and heat losses and tends to keep the plasma from reaching a "burning" state.

Simulations are necessary if we are to understand and control plasma microturbulence. However, because fusion plasmas are virtually collisionless, a three-dimensional (i.e., in space) fluid description must, in principle, be abandoned, in favor of a six-dimensional (i.e., in phase space) kinetic one.

Fortunately, several processes on very small spatio-temporal scales – such as the gyrating motion of the particles around magnetic field lines – can be removed, analytically, from the basic equations, thus making the problem five-dimensional. This reduces the computational requirements by many orders of magnitude, without sacrificing accuracy. This approach is called gyrokinetics, which gave the present project its name.

The GYROKINETICS project was carried out in 2006 and 2007 by researchers from the Max Planck Institute for Plasma Physics at Garching, Germany, and the Ecole Polytechnique Fédérale of Lausanne, in Switzerland using DEISA’s resources under the DECI and the JRA3 frameworks.

As a result, the research group were able to show that certain small-scale turbulent processes can make substantial contributions to the overall heat transport carried by the plasma electrons. It turned out, in particular, that there often tends to be a scale separation between ion and electron thermal transport. While the former is usually carried more or less exclusively by long wavelength fluctuations, a substantial proportion of the latter can be carried by much smaller scales.

These findings represent an important new insight into the physics of turbulent transport in magnetized plasmas, and will have important implications for future full-torus simulations of large fusion devices, such as the International Thermonuclear Experimental Reactor ITER.

Kirsti Turtiainen | alfa
Further information:
http://www.deisa.eu/press/GYROKINETICS.pdf

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>