Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar flares set the Sun quaking

21.04.2008
Data from the ESA/NASA spacecraft SOHO shows clearly that powerful starquakes ripple around the Sun in the wake of mighty solar flares that explode above its surface. The observations give solar physicists new insight into a long-running solar mystery and may even provide a way of studying other stars.

The outermost quarter of the Sun’s interior is a constantly churning maelstrom of hot gas. Turbulence in this region causes ripples that criss-cross the solar surface, making it heave up and down in a patchwork pattern of peaks and troughs.

The joint ESA-NASA Solar and Heliospheric Observatory (SOHO) has proved to be an exceptional spacecraft for studying this phenomenon. Discovering how the ripples move around the Sun has provided valuable information about the Sun’s interior conditions. A class of oscillations called the 5-minute oscillations with a frequency of around 3 millihertz have proven particularly useful.

According to conventional thinking, the 5-minute oscillations can be thought of as the sound you would get from a bell sitting in the middle of the desert and constantly being touched by random sand grains, blown on the wind. But what Christoffer Karoff and Hans Kjeldsen, both at the University of Aarhus, Denmark, saw in the data, was very different.

“The signal we saw was like someone occasionally walking up to the bell and striking it, which told us that there was something missing from our understanding of how the Sun works,” Karoff says.

So they began looking for the culprit and discovered an unexpected correlation with solar flares. It seemed that when the number of solar flares went up, so did the strength of the 5-minute oscillations.

“The strength of the correlation was so strong that there can be no doubt about it,” says Karoff.

A similar phenomenon is known on Earth in the aftermath of large earthquakes. For example, after the 2004 Sumatra-Andaman Earthquake, the whole Earth rang with seismic waves like a vibrating bell for several weeks.

The correlation is not the end of the story. Now the researchers have to work to understand the mechanism by which the flares cause the oscillations. “We are not completely sure how the solar flares excite the global oscillations,” says Karoff.

In a broader context, the correlation suggests that, by looking for similar oscillations within other stars, astronomers can monitor them for flares. Already, Karoff has used high-technology instruments at major ground-based telescopes to look at other Sun-like stars. In several cases, he detected the tell-tale signs of oscillations that might originate from flares.

“Now we need to monitor these stars for hundreds of days,” he says. That will require dedicated spacecraft, such as the CNES mission with ESA participation, COROT. The hard work, it seems, is just starting.

Bernhard Fleck | alfa
Further information:
http://www.esa.int/esaSC/SEM4SB4XQEF_index_0.html

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>