Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plasma hotter than expected

Scientists at MPQ discover unexpected properties of laser-induced plasmas using new method of electron deflectometry

Laser-induced plasmas are of great interest because they are suitable for a variety of applications such as nuclear fusion, acceleration of electrons and ions, and the generation of X-Ray sources and attosecond pulses in the extreme ultraviolet.

A detailed knowledge of the temporal evolution of this state is critical for optimizing the parameters of a given application. With the help of a new pump-probe technique Dr. Martin Centurion, Peter Reckenthäler, and Dr. Ernst Fill of the Attosecond and High-Field Physics Division (Director: Prof. Ferenc Krausz) at Max Planck Institute of Quantum Optics (MPQ) in Garching have now succeeded in observing plasma dynamics in real time (Nature Photonics, DOI 10.1038/nphoton.2008.77).

They discovered that against all expectations OFI (optical-field induced) plasmas build up high electric and magnetic fields. This knowledge may have a significant impact on a range of applications of laser-induced plasmas.

A plasma is a state of very hot and dense matter in which the bonds between the electrons of the atomic shell and the nucleus are broken apart such that positively charged ions and negatively charged electrons coexist independently.

According to standard theory the charges balance each other out, and as a consequence the interior of the plasma is free of electric fields. Charge fluctuations are supposed to occur only over very small distances that are of the order of the Debye length (0.1 micrometer). In contrast to these expectations the MPQ experiments have revealed a positively charged core and a cloud of electrons expanding far beyond the Debye length.

At MPQ the OFI plasma is generated by intense laser pulses with duration of 50 femtoseconds (1 fs=10 to the power of -15 sec) that are directed onto nitrogen streaming from a nozzle. Due to the high electric fields of the laser pulse the atoms get ionized and a plasma forms in the region of the focus of the laser beam. Now pulses of monoenergetic 20 keV electrons are sent through the plasma. Thereafter the electrons are detected on a screen. The influence of the plasma on the probe-beam of electrons is reflected in their spatial distribution. If the plasma were free of electric fields the electrons would be distributed homogenously and only be blocked by the gas nozzle. The experiments, however, show a very interesting and fast changing pattern on the screen.

In order to observe the temporal evolution of the plasma the time delay between laser pulse and probe pulse is varied. The images taken in a distance of a few picoseconds show the following behavior (see the figure below from left to right): In the very beginning - after about a few picoseconds - a "hole" appears in the electron beam in the area of the laser focus. The electrons missing in the depleted region have obviously wandered into two bright "lobes" on each side of the plasma region, which move away along the line of laser propagation in opposite directions.

This goes on for about 80 picoseconds, then the electrons accumulate in the central region to a density higher than in the original beam. After about 300 picoseconds this pattern gets washed out.

The scientists explain these observations with the following mechanisms: Shortly after the plasma is generated by a laser pulse a positively charged core is formed which is surrounded by a cloud of hot electrons. Due to this charge-separation electric and magnetic fields build up that deflect the electrons resulting in the distribution described above. After about 100 picoseconds the electron cloud expands beyond the original plasma region reaching a radius that is a thousand times larger than the Debye length. Under these conditions the probe beam now becomes focused onto the centre of the detector screen resulting in a bright spot.

Numerical simulations based on these assumptions are in very good agreement with the experimental data. The relevant physical parameters, such as the fields, the number of charges and the electron temperature can be deduced. The calculations also show that such a charge distribution is only possible if a small fraction of the electrons heats up to temperatures higher than the plasma temperature itself. This could possibly be caused by frequent recollisions of the electrons with the atomic nuclei.

This new technique of electron deflectometry is able to capture changes in the plasma evolution with a spatial resolution of 30 microns on a picosecond scale. The sensitivity is due to the fact that even small charge imbalances within the plasma are observable as distortions in the spatial profile of the electron beam. The new method will lead to a better understanding of laser plasmas and may have the potential to improve electron and ion acceleration techniques that are based on plasmas. [O.M.]
Original publication:
M. Centurion, P. Reckenthaler, S. Trushin, F. Krausz, and E. Fill
"Picosecond electron deflectometry of optical-field ionized plasmas"
Nature Photonics, DOI 10.1038/nphoton.2008.77
Dr. Ernst Fill
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 (0) 89 / 2891 4110
Fax: +49 (0) 89 / 2891 4141
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0) 89 / 32905 213
Fax: +49 (0) 89 / 32905 200

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>