Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black hole sheds light on a galaxy

18.04.2008
Light echo of a high-energy flash from a black hole first observed in detail

A light echo occurs when interstellar gas is heated by radiation and reacts by emission of light. An international team led by Stefanie Komossa from the Max Planck Institute for extraterrestrial Physics in Garching, Germany, has observed the light echo of an enormous X-ray flare, which was almost certainly produced when a single star was disrupted by a supermassive black hole. For the first time, the light echo of such a rare and highly dramatic event could be observed in great detail. The light echo not only revealed the stellar disruption process, but it also provides a powerful new method for mapping galactic nuclei (Astrophysical Journal Letters, May 2008).


Illustration: MPE/ESA
The artistic view shows the light echo of a high-energy flash from a black hole

When a star is disrupted by a black hole in the nucleus of a galaxy, its debris is inevitably attracted and absorbed by the black hole. This sudden increase in the accretion rate causes an abrupt burst of ultraviolet and X-ray light because the gas from the disrupted star becomes very hot. As the high-energy radiation travels through the core of the galaxy it illuminates surrounding matter and so makes it possible to probe regions of the galaxy that would otherwise be unobservable.

“To study the core of a normal galaxy is like looking at the New York skyline at night during a power failure: You can’t learn much about the buildings, roads and parks”, says Stefanie Komossa. “The situation changes, for example, during a fireworks display. It’s exactly the same when a sudden burst of high-energy radiation illuminates a galaxy.” However the astronomers

had to hurry up and look through the telescope at the right moment, because X-ray bursts don’t last very long.

From the strength, the degree of ionization and the deduced velocities of the rapidly varying emission lines, the physicists can tell in which part of the galaxy they are emitted. The emission lines represent the “fingerprints” of the atoms in the hot gases heated by the flare. The galaxy with catalog name SDSSJ0952+2143 which was detected in December 2007 by Komossa and her team in the Sloan Digital Sky Survey archive caught their attention because of its superstrong iron lines: the strongest (relative to oxygen emission) that were ever observed in a galaxy. In them the authors see an evidence for a molecular torus which plays an important part in so-called unified models of active galaxies.

The unified model postulates that all active galaxies are made of identical components and that the perceived differences are just due to the different directions from which we view the galaxies. An important element of this model is the molecular torus, which surrounds the black hole and its accretion disk and covers them when viewed from certain directions. Also the breadth of the spectral lines which the scientists measure is influenced by the viewing direction and that means by the molecular torus.

Should the expectations of Komossa and her colleagues be confirmed, this will be the first time that scientists have seen such a strong time-variable signal from a molecular torus. From the light echo, the torus can be mapped and its geometry inferred, something which has not been possible up to now.

Along the same lines is the detection of variable emission in the infrared: It can be interpreted as the “last cry for help” of the heated dusty torus matter before the dust is destroyed by the flash.

In addition to the remarkably strong iron lines, the scientists also noticed a very peculiar shape of the hydrogen emission lines which had never been seen before. This line hints at activities of the disk of matter around the black hole, which consists mainly of hydrogen. “Probably we are seeing the debris of the disrupted star here which is just being accreted by the black hole”, explains Hongyan Zhou from the MPE, co-author of the research paper.

The recently-discovered light echo still continues and is being traced with powerful telescopes. The burst itself has faded away. The first observations with the X-ray satellite Chandra show measurable but already faint X-ray light from the galactic nucleus.

“Reverberation-mapping of light echoes opens up new possibilities to study galaxies”, concludes Komossa. The team now wants to use this method to explore the physical conditions in the circumnuclear material in active and non-active galaxies.

Original paper: http://xxx.lanl.gov/abs/0804.2670

Contact:

Dr. Mona Clerico
Press Officer
Max Planck Institute for Astrophysics and Max Planck Institute for extraterrestrial Physics

Phone +49 89 30000-3980 Email: clerico@mpe.mpg.de

Dr. Stefanie Komossa
Max Planck Institute for extraterrestrial Physics
Phone +49 89 30000-3577
Email: skomossa@mpe.mpg.de

Dr. Mona Clerico | Max-Planck-Gesellschaft
Further information:
http://www.mpe.mpg.de/main.html

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>