Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

18 billions of suns support Einstein

17.04.2008
Astronomers have confirmed the binary nature of OJ 287, a very massive black hole in the centre of a very distant galaxy in the constellation of Cancer.

A central black hole, with a mass equal to 18 billion times that of the Sun, is orbited by a smaller one, and the interaction of the system with its surroundings produces brightness changes that allow astronomers to study the evolution of the orbit.

This evolution is dominated by one of the most intriguing predictions of Einstein's theory of General Relativity: the emission of gravitational waves. This outstanding confirmation of Einstein's centennary theory has been recently published in the journal Nature, and Calar Alto staff, telescopes and instruments have contributed to the discovery...

Astronomers believe that very massive black holes lurk at the centres of most galaxies but often, as in the case of our own Galaxy, they remain silent and are difficult to detect. But in other cases the black holes are surrounded by disks of material that falls onto them (accretion disks). The infalling material is heated and emits huge quantities of radiation: the active nucleus of a galaxy can appear, then, as a quasar.

One of these objects is OJ 287, the centre of a galaxy placed at 3.5 billion light-years in the constellation of Cancer. But this object exhibits the peculiarity of sending every twelve years quasi-periodic pulses of energy, superposed to its normal activity. The study recently published in Nature confirms one of the suspected interpretations for this behaviour: this quasar is powered by a binary black hole. A very massive black hole is surrounded by an accretion disk: the classical quasar display. But a second, much lighter black hole orbits around the very massive black hole and blasts into the accretion disk twice per orbit: this generates the quasi-periodic pulses.

The research group led by Dr. Mauri Valtonen of University of Turku, Finland, has carefully analysed the behaviour of this system. Timing the brightness changes over many years, they have been able to plot the orbit of the small black hole, and this provides a precise way to measure the big hole's mass: 18 billion solar masses. Also, they have followed the evolution of the orbit and have checked that its size and orientation change accordingly to the predictions of Einstein's theory of General Relativity.

This theory displays all its power when dealing with extreme gravitational fields, and there are not so many situations allowing to test the theories of gravitation in such strong field situation. The study clearly shows an example of gravitational waves at work, one of the most exotic predictions of Einstein's theory. Effectively, the binary black hole orbit shrinks and evolves in a way that can only be explained if it is losing huge quantities of energy in form of gravitational radiation.

The observations leading to this discovery have been done thanks to the joint collaboration of a number of observatories at Japan, China, Turkey, Greece, Finland, Poland, Great Britain and Spain. More than 25 astronomers from 10 countries took part in the campaign. Two points deserve a special mention: first, that all the telescopes involved belonged to the category that nowadays is called of "small" apertures (only two of them were close to 2.5 m in diameter), and second, that a number of key participants were amateur astronomers who operate their own telescopes.

Calar Alto observatory participated in the observational campaigns with its 2.2 m telescope, equipped with instrument CAFOS, to perform photometric and polarimetric observations. The polarimetric data were crucial to confirm the conclusions of the study, as stated in the paper published in Nature, and only two of the participant observatories provided this kind of data.

The model of the binary black hole developed by Valtonen and collaborators predicts a new outburst of OJ 287 quasar in 2016. No doubt many telescopes will be looking to Cancer around the predicted dates of that year, and Calar Alto instruments will count among them.

David Galadi-Enriquez | alfa
Further information:
http://www.caha.es/18-billions-of-suns-support-einstein_en.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>