Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

18 billions of suns support Einstein

17.04.2008
Astronomers have confirmed the binary nature of OJ 287, a very massive black hole in the centre of a very distant galaxy in the constellation of Cancer.

A central black hole, with a mass equal to 18 billion times that of the Sun, is orbited by a smaller one, and the interaction of the system with its surroundings produces brightness changes that allow astronomers to study the evolution of the orbit.

This evolution is dominated by one of the most intriguing predictions of Einstein's theory of General Relativity: the emission of gravitational waves. This outstanding confirmation of Einstein's centennary theory has been recently published in the journal Nature, and Calar Alto staff, telescopes and instruments have contributed to the discovery...

Astronomers believe that very massive black holes lurk at the centres of most galaxies but often, as in the case of our own Galaxy, they remain silent and are difficult to detect. But in other cases the black holes are surrounded by disks of material that falls onto them (accretion disks). The infalling material is heated and emits huge quantities of radiation: the active nucleus of a galaxy can appear, then, as a quasar.

One of these objects is OJ 287, the centre of a galaxy placed at 3.5 billion light-years in the constellation of Cancer. But this object exhibits the peculiarity of sending every twelve years quasi-periodic pulses of energy, superposed to its normal activity. The study recently published in Nature confirms one of the suspected interpretations for this behaviour: this quasar is powered by a binary black hole. A very massive black hole is surrounded by an accretion disk: the classical quasar display. But a second, much lighter black hole orbits around the very massive black hole and blasts into the accretion disk twice per orbit: this generates the quasi-periodic pulses.

The research group led by Dr. Mauri Valtonen of University of Turku, Finland, has carefully analysed the behaviour of this system. Timing the brightness changes over many years, they have been able to plot the orbit of the small black hole, and this provides a precise way to measure the big hole's mass: 18 billion solar masses. Also, they have followed the evolution of the orbit and have checked that its size and orientation change accordingly to the predictions of Einstein's theory of General Relativity.

This theory displays all its power when dealing with extreme gravitational fields, and there are not so many situations allowing to test the theories of gravitation in such strong field situation. The study clearly shows an example of gravitational waves at work, one of the most exotic predictions of Einstein's theory. Effectively, the binary black hole orbit shrinks and evolves in a way that can only be explained if it is losing huge quantities of energy in form of gravitational radiation.

The observations leading to this discovery have been done thanks to the joint collaboration of a number of observatories at Japan, China, Turkey, Greece, Finland, Poland, Great Britain and Spain. More than 25 astronomers from 10 countries took part in the campaign. Two points deserve a special mention: first, that all the telescopes involved belonged to the category that nowadays is called of "small" apertures (only two of them were close to 2.5 m in diameter), and second, that a number of key participants were amateur astronomers who operate their own telescopes.

Calar Alto observatory participated in the observational campaigns with its 2.2 m telescope, equipped with instrument CAFOS, to perform photometric and polarimetric observations. The polarimetric data were crucial to confirm the conclusions of the study, as stated in the paper published in Nature, and only two of the participant observatories provided this kind of data.

The model of the binary black hole developed by Valtonen and collaborators predicts a new outburst of OJ 287 quasar in 2016. No doubt many telescopes will be looking to Cancer around the predicted dates of that year, and Calar Alto instruments will count among them.

David Galadi-Enriquez | alfa
Further information:
http://www.caha.es/18-billions-of-suns-support-einstein_en.html

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>