Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


18 billions of suns support Einstein

Astronomers have confirmed the binary nature of OJ 287, a very massive black hole in the centre of a very distant galaxy in the constellation of Cancer.

A central black hole, with a mass equal to 18 billion times that of the Sun, is orbited by a smaller one, and the interaction of the system with its surroundings produces brightness changes that allow astronomers to study the evolution of the orbit.

This evolution is dominated by one of the most intriguing predictions of Einstein's theory of General Relativity: the emission of gravitational waves. This outstanding confirmation of Einstein's centennary theory has been recently published in the journal Nature, and Calar Alto staff, telescopes and instruments have contributed to the discovery...

Astronomers believe that very massive black holes lurk at the centres of most galaxies but often, as in the case of our own Galaxy, they remain silent and are difficult to detect. But in other cases the black holes are surrounded by disks of material that falls onto them (accretion disks). The infalling material is heated and emits huge quantities of radiation: the active nucleus of a galaxy can appear, then, as a quasar.

One of these objects is OJ 287, the centre of a galaxy placed at 3.5 billion light-years in the constellation of Cancer. But this object exhibits the peculiarity of sending every twelve years quasi-periodic pulses of energy, superposed to its normal activity. The study recently published in Nature confirms one of the suspected interpretations for this behaviour: this quasar is powered by a binary black hole. A very massive black hole is surrounded by an accretion disk: the classical quasar display. But a second, much lighter black hole orbits around the very massive black hole and blasts into the accretion disk twice per orbit: this generates the quasi-periodic pulses.

The research group led by Dr. Mauri Valtonen of University of Turku, Finland, has carefully analysed the behaviour of this system. Timing the brightness changes over many years, they have been able to plot the orbit of the small black hole, and this provides a precise way to measure the big hole's mass: 18 billion solar masses. Also, they have followed the evolution of the orbit and have checked that its size and orientation change accordingly to the predictions of Einstein's theory of General Relativity.

This theory displays all its power when dealing with extreme gravitational fields, and there are not so many situations allowing to test the theories of gravitation in such strong field situation. The study clearly shows an example of gravitational waves at work, one of the most exotic predictions of Einstein's theory. Effectively, the binary black hole orbit shrinks and evolves in a way that can only be explained if it is losing huge quantities of energy in form of gravitational radiation.

The observations leading to this discovery have been done thanks to the joint collaboration of a number of observatories at Japan, China, Turkey, Greece, Finland, Poland, Great Britain and Spain. More than 25 astronomers from 10 countries took part in the campaign. Two points deserve a special mention: first, that all the telescopes involved belonged to the category that nowadays is called of "small" apertures (only two of them were close to 2.5 m in diameter), and second, that a number of key participants were amateur astronomers who operate their own telescopes.

Calar Alto observatory participated in the observational campaigns with its 2.2 m telescope, equipped with instrument CAFOS, to perform photometric and polarimetric observations. The polarimetric data were crucial to confirm the conclusions of the study, as stated in the paper published in Nature, and only two of the participant observatories provided this kind of data.

The model of the binary black hole developed by Valtonen and collaborators predicts a new outburst of OJ 287 quasar in 2016. No doubt many telescopes will be looking to Cancer around the predicted dates of that year, and Calar Alto instruments will count among them.

David Galadi-Enriquez | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>