Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

18 billions of suns support Einstein

17.04.2008
Astronomers have confirmed the binary nature of OJ 287, a very massive black hole in the centre of a very distant galaxy in the constellation of Cancer.

A central black hole, with a mass equal to 18 billion times that of the Sun, is orbited by a smaller one, and the interaction of the system with its surroundings produces brightness changes that allow astronomers to study the evolution of the orbit.

This evolution is dominated by one of the most intriguing predictions of Einstein's theory of General Relativity: the emission of gravitational waves. This outstanding confirmation of Einstein's centennary theory has been recently published in the journal Nature, and Calar Alto staff, telescopes and instruments have contributed to the discovery...

Astronomers believe that very massive black holes lurk at the centres of most galaxies but often, as in the case of our own Galaxy, they remain silent and are difficult to detect. But in other cases the black holes are surrounded by disks of material that falls onto them (accretion disks). The infalling material is heated and emits huge quantities of radiation: the active nucleus of a galaxy can appear, then, as a quasar.

One of these objects is OJ 287, the centre of a galaxy placed at 3.5 billion light-years in the constellation of Cancer. But this object exhibits the peculiarity of sending every twelve years quasi-periodic pulses of energy, superposed to its normal activity. The study recently published in Nature confirms one of the suspected interpretations for this behaviour: this quasar is powered by a binary black hole. A very massive black hole is surrounded by an accretion disk: the classical quasar display. But a second, much lighter black hole orbits around the very massive black hole and blasts into the accretion disk twice per orbit: this generates the quasi-periodic pulses.

The research group led by Dr. Mauri Valtonen of University of Turku, Finland, has carefully analysed the behaviour of this system. Timing the brightness changes over many years, they have been able to plot the orbit of the small black hole, and this provides a precise way to measure the big hole's mass: 18 billion solar masses. Also, they have followed the evolution of the orbit and have checked that its size and orientation change accordingly to the predictions of Einstein's theory of General Relativity.

This theory displays all its power when dealing with extreme gravitational fields, and there are not so many situations allowing to test the theories of gravitation in such strong field situation. The study clearly shows an example of gravitational waves at work, one of the most exotic predictions of Einstein's theory. Effectively, the binary black hole orbit shrinks and evolves in a way that can only be explained if it is losing huge quantities of energy in form of gravitational radiation.

The observations leading to this discovery have been done thanks to the joint collaboration of a number of observatories at Japan, China, Turkey, Greece, Finland, Poland, Great Britain and Spain. More than 25 astronomers from 10 countries took part in the campaign. Two points deserve a special mention: first, that all the telescopes involved belonged to the category that nowadays is called of "small" apertures (only two of them were close to 2.5 m in diameter), and second, that a number of key participants were amateur astronomers who operate their own telescopes.

Calar Alto observatory participated in the observational campaigns with its 2.2 m telescope, equipped with instrument CAFOS, to perform photometric and polarimetric observations. The polarimetric data were crucial to confirm the conclusions of the study, as stated in the paper published in Nature, and only two of the participant observatories provided this kind of data.

The model of the binary black hole developed by Valtonen and collaborators predicts a new outburst of OJ 287 quasar in 2016. No doubt many telescopes will be looking to Cancer around the predicted dates of that year, and Calar Alto instruments will count among them.

David Galadi-Enriquez | alfa
Further information:
http://www.caha.es/18-billions-of-suns-support-einstein_en.html

More articles from Physics and Astronomy:

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>