Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at Parc de Recerca UAB create the first thermal nanomotor in the world

16.04.2008
The "nanotransporter" consists of a carbon nanotube - a cylindrical molecule formed by carbon atoms - covered with a shorter concentric nanotube which can move back and forth or act as a rotor. A metal cargo can be added to the shorter mobile tube, which could then transport this cargo from one end to the other of the longer nanotube or rotate around its axis.

Researchers are able to control these movements by applying different temperatures at the two ends of the long nanotube. The shorter tube thus moves from the warmer to the colder area and is similar to how air moves around a heater. This is the first time a nanoscale motor is created that can use changes in temperature to generate and control movements.

The movements along the longer tube can be controlled with a precision of less than the diameter of an atom. This ability to control objects at nanometre scale can be extremely useful for future applications in nanotechnology, e.g. in designing nanoelectromechanical systems with great technological potential in the fields in biomedicine and new materials.

The research has been published in the online journal Science Express (www.sciencexpress.org) and was directed by Adrian Bachtold, researcher at CIN2 (Nanoscience and Nanotechnology Research Centre, CSIC-ICN) and at CNM (National Microelectronics Centre, CSIC), and by Eduardo Hernández at ICMAB (Institute of Material Science, CSIC), all of which form part of the UAB Research Park.

Research members included Riccardo Rurali from the UAB Department of Electronic Engineering, and Amelia Barreiro and Joel Moser from CIN2 (CSIC-ICN), with the collaboration of researchers from the University of Vienna, Austria and from EPFL in Lausanne, Switzerland.

Octavi López Coronado | alfa
Further information:
http://www.uab.es
http://www.uab.es/uabdivulga

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>