Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contract signed for ESA’s Sentinel-3 earth observation satellite

15.04.2008
The European Space Agency and Thales Alenia Space today signed a €305 million contract to provide the first Sentinel-3 earth observation satellite, devoted to oceanography and land-vegetation monitoring, as part of the European GMES programme. As prime contractor, Thales Alenia Space is responsible for the satellite’s design, development and integration.

The contract was signed today in Paris by Volker Liebig, ESA Director of Earth Observation, and Pascale Sourisse, President and CEO of Thales Alenia Space, in the presence of Jean-Jacques Dordain, ESA Director General, officials from the European Commission, the French Ministry of Research and Higher Education and Dominique Bussereau, French Secretary of State for Transport at the Ecology, Energy, Sustainable Development & Land Management Ministry.

Underlining the value of this mission for Europe, Volker Liebig commented: "This satellite is an important element of GMES and will enable Europe to observe important ocean parameters".

Global Monitoring for Environment and Security (GMES) aims at delivering environment and security monitoring services and is being led by the European Commission. It is Europe’s response to the ever-increasing demands of effective environmental policies and is at the same time the European contribution to the Global Earth Observation System of Systems (GEOSS).

ESA is responsible for the implementation of the GMES Space Component, a package of earth observation missions involving ESA, EU/ESA Member States and other partners. Central elements of this Space Component are the five families of Sentinel missions.

Sentinel-3 will provide crucial data for information services to the European Union and its Member States as part of GMES. The services to be fed data cover areas such as climate change, sustainable development, environmental policies, European civil protection, development aid, humanitarian aid and the European Common Foreign & Security Policy.

The Sentinel-3 mission will produce a consistent, long-term set of remotely-sensed marine and land data for (operational) ocean state analysis, forecasting and service provision. A comprehensive measurement system facilitating global ocean and land observation is required in order to provide data for advanced numerical forecasting models.

Sentinel-3 will determine parameters such as sea surface topography, sea/land surface temperature, ocean colour and land colour with high-end accuracy and reliability. For this purpose, it carries an advanced radar altimeter and a multi-channel optical imaging instrument.

To achieve near-global coverage and meet all scientific requirements, Sentinel-3 will be placed in a high-inclination, sun-synchronous polar orbit. Near-realtime data processing and delivery will allow operational services to continuously profit from the mission.

Bruno Berruti | alfa
Further information:
http://www.esa.int/esaEO/SEMYZS3XQEF_index_0.html

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>